Project description
Tracking DNA damage repair
DNA damage repair is paramount to maintaining genomic integrity and preventing cancer. Homologous recombination (HR) ensures the repair of double strand breaks in DNA through key intermediates known as Holliday junctions (HJ). The EU-funded HollidayTrack project will develop molecular tools for detecting and determining the dynamic properties of HJ structures in cells. It will address the impact of local chromatin structure on HJ migration and resolution as well as the role of HJs in telomere biology. Collectively, the project's results will advance our knowledge on the patterns and distributions of HJ formation and migration in different cancer cell types.
Objective
omologous recombination (HR) is a DNA repair pathway that plays a central role in the maintenance of genomic stability and cancer prevention. In the late stages of HR, recombination intermediates (Holliday junctions, HJs) need to be resolved to allow proper chromosome segregation. Whilst HJ processing reactions have been well characterised in vitro, there is limited knowledge of the dynamic properties of these structures within a cellular context. To explore the biological properties of HJs in vivo, I will use site-specific DNA cleavage and ChIP-sequencing techniques to reveal the distance of HJ migration from the site where HR is initiated. The ability of HJs to branch migrate spontaneously or be driven by potential HJ translocases will be determined using RAD54, BLM, WRN, RECQ1, RECQ5 and FANCM deficient cells. To enable these studies, my first challenge will be to develop a molecular tool that specifically detects HJs in vivo, that can be used to monitor the appearance and kinetics of HJs after DNA double strand break formation. The specific DNA break sites and corresponding HJ migration will be determined with respect to the dynamic chromosome domain architecture and organisation within human cells, which will provide valuable insights into the impact of local chromatin structure on HJ migration and resolution. Additionally, the newly developed HJ-specific tools may be applied to ask a wide range of questions relating to the role of HJs in telomere biology and replication fork reversal or to study patterns and distributions of HJ formation and migration in different cancer cell types.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics DNA
- medical and health sciences clinical medicine oncology
- natural sciences biological sciences genetics chromosomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
NW1 1AT London
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.