Project description
Deep learning to improve medical imaging
Medical imaging has revolutionised diagnosis, treatment and follow-up, providing fundamental information on anatomy and physiology with very high spatial resolution. However, the imaging process can be stressful for patients, and it is difficult in the presence of motion. The key objective of the EU-funded Deep4MI project is to advance and automate medical imaging so as to provide higher diagnostic and prognostic accuracy for clinical decision-making. Using machine and deep learning techniques, scientists will improve image acquisition, reconstruction and analysis to extract more clinical information from medical images and optimise results interpretation.
Objective
Medical imaging has revolutionized medicine and healthcare like no other recent technology, and is now an integral part of diagnosis, treatment planning, treatment delivery and follow-up. It provides an unparalleled ability to image anatomy and function with high spatial (and temporal) resolution. Its success has led to a dramatic increase in the number of medical imaging examinations. Despite this success, medical imaging is often stressful for patients, requires patient cooperation and is difficult in the presence of motion (e.g. patient motion or breathing motion). Furthermore, even more than 100 years after the discovery of X-rays, the interpretation of medical images relies almost exclusively on human experts. All of the above mean that there is a strong need for increased automation and quantification in order to reduce costs, increase efficiency and patient-friendliness, and provide higher diagnostic and prognostic accuracy for clinical decision making.
At the same time, machine learning and deep learning techniques have made significant advances and have started to make a large impact in many real-world applications. The aim of this proposal is to exploit these advances to address the above challenges and to achieve a paradigm shift in the way information is extracted from medical images for diagnostics, therapy and follow-up. We will do this by developing a transformative and synergistic approach to medical imaging in which acquisition, reconstruction, analysis and interpretation will be tightly coupled, with bidirectional feedback between the different stages, in order to optimize the overall objective of the imaging pipeline: Extracting clinically useful and actionable information. To achieve this step change, the project aims to develop novel deep learning approaches for image acquisition, reconstruction, analysis and interpretation that can be trained in an end-to-end fashion, allowing fast and more efficient imaging.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences basic medicine anatomy and morphology
- social sciences sociology industrial relations automation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
81675 MUENCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.