Descrizione del progetto
Apprendimento profondo per migliorare la diagnostica per immagini
La diagnostica per immagini ha rivoluzionato la diagnosi, il trattamento e il follow-up, fornendo informazioni fondamentali sull’anatomia e la fisiologia con una risoluzione spaziale molto elevata. Tuttavia, il processo di immaginografia può essere stressante per i pazienti, ed è difficile in presenza di movimento. L’obiettivo chiave del progetto Deep4MI, finanziato dall’UE, è di far progredire e automatizzare la diagnostica per immagini in modo da fornire una maggiore accuratezza diagnostica e prognostica per il processo decisionale clinico. Utilizzando tecniche di apprendimento automatico e profondo, gli scienziati miglioreranno l’acquisizione, la ricostruzione e l’analisi delle immagini per estrarre più informazioni cliniche dalle immagini mediche e ottimizzare l’interpretazione dei risultati.
Obiettivo
Medical imaging has revolutionized medicine and healthcare like no other recent technology, and is now an integral part of diagnosis, treatment planning, treatment delivery and follow-up. It provides an unparalleled ability to image anatomy and function with high spatial (and temporal) resolution. Its success has led to a dramatic increase in the number of medical imaging examinations. Despite this success, medical imaging is often stressful for patients, requires patient cooperation and is difficult in the presence of motion (e.g. patient motion or breathing motion). Furthermore, even more than 100 years after the discovery of X-rays, the interpretation of medical images relies almost exclusively on human experts. All of the above mean that there is a strong need for increased automation and quantification in order to reduce costs, increase efficiency and patient-friendliness, and provide higher diagnostic and prognostic accuracy for clinical decision making.
At the same time, machine learning and deep learning techniques have made significant advances and have started to make a large impact in many real-world applications. The aim of this proposal is to exploit these advances to address the above challenges and to achieve a paradigm shift in the way information is extracted from medical images for diagnostics, therapy and follow-up. We will do this by developing a transformative and synergistic approach to medical imaging in which acquisition, reconstruction, analysis and interpretation will be tightly coupled, with bidirectional feedback between the different stages, in order to optimize the overall objective of the imaging pipeline: Extracting clinically useful and actionable information. To achieve this step change, the project aims to develop novel deep learning approaches for image acquisition, reconstruction, analysis and interpretation that can be trained in an end-to-end fashion, allowing fast and more efficient imaging.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze mediche e della salute medicina di base anatomia e morfologia
- scienze sociali sociologia relazioni industriali automazione
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
ERC-ADG - Advanced Grant
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2019-ADG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
81675 MUENCHEN
Germania
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.