Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Deep Learning for Medical Imaging: Learning Clinically Useful Information from Images

Opis projektu

Uczenie głębokie w służbie obrazowania medycznego

Obrazowanie medyczne zrewolucjonizowało diagnostykę, leczenie i wizyty kontrolne pacjentów, dostarczając podstawowych informacji o anatomii i fizjologii w bardzo wysokiej rozdzielczości przestrzennej. Jednak proces obrazowania może być dla pacjentów stresujący, a każde poruszenie utrudnia przeprowadzenie go. Kluczowym celem dofinansowanego przez UE projektu Deep4MI jest rozwinięcie i zautomatyzowanie procesu obrazowania medycznego, aby dostarczał bardziej dokładnych danych diagnostycznych i prognostycznych na potrzeby podejmowania decyzji o kierunku leczenia. Wykorzystując techniki uczenia maszynowego i uczenia głębokiego, naukowcy poprawią procesy pozyskiwania, rekonstrukcji i analizy obrazów medycznych, aby uzyskać z nich więcej informacji i zoptymalizować interpretację wyników.

Cel

Medical imaging has revolutionized medicine and healthcare like no other recent technology, and is now an integral part of diagnosis, treatment planning, treatment delivery and follow-up. It provides an unparalleled ability to image anatomy and function with high spatial (and temporal) resolution. Its success has led to a dramatic increase in the number of medical imaging examinations. Despite this success, medical imaging is often stressful for patients, requires patient cooperation and is difficult in the presence of motion (e.g. patient motion or breathing motion). Furthermore, even more than 100 years after the discovery of X-rays, the interpretation of medical images relies almost exclusively on human experts. All of the above mean that there is a strong need for increased automation and quantification in order to reduce costs, increase efficiency and patient-friendliness, and provide higher diagnostic and prognostic accuracy for clinical decision making.

At the same time, machine learning and deep learning techniques have made significant advances and have started to make a large impact in many real-world applications. The aim of this proposal is to exploit these advances to address the above challenges and to achieve a paradigm shift in the way information is extracted from medical images for diagnostics, therapy and follow-up. We will do this by developing a transformative and synergistic approach to medical imaging in which acquisition, reconstruction, analysis and interpretation will be tightly coupled, with bidirectional feedback between the different stages, in order to optimize the overall objective of the imaging pipeline: Extracting clinically useful and actionable information. To achieve this step change, the project aims to develop novel deep learning approaches for image acquisition, reconstruction, analysis and interpretation that can be trained in an end-to-end fashion, allowing fast and more efficient imaging.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-ADG - Advanced Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2019-ADG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

KLINIKUM DER TECHNISCHEN UNIVERSITÄT MÜNCHEN (TUM KLINIKUM)
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 2 499 900,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 2 499 900,00

Beneficjenci (1)

Moja broszura 0 0