Description du projet
L’apprentissage profond pour améliorer l’imagerie médicale
L’imagerie médicale a révolutionné le diagnostic, le traitement et le suivi, en fournissant des informations fondamentales sur l’anatomie et la physiologie avec une très haute résolution spatiale. Cependant, le processus d’imagerie peut être stressant pour les patients, et il s’avère complexe à réaliser en présence de mouvements. Le principal objectif du projet Deep4MI, financé par l’UE, consiste à faire progresser et à automatiser l’imagerie médicale afin de fournir une plus grande précision diagnostique et pronostique pour la prise de décision clinique. Grâce à des techniques d’apprentissage automatique et d’apprentissage profond, les scientifiques amélioreront l’acquisition, la reconstruction et l’analyse des images afin d’extraire à partir des images médicales davantage d’informations cliniques et d’optimiser l’interprétation des résultats.
Objectif
Medical imaging has revolutionized medicine and healthcare like no other recent technology, and is now an integral part of diagnosis, treatment planning, treatment delivery and follow-up. It provides an unparalleled ability to image anatomy and function with high spatial (and temporal) resolution. Its success has led to a dramatic increase in the number of medical imaging examinations. Despite this success, medical imaging is often stressful for patients, requires patient cooperation and is difficult in the presence of motion (e.g. patient motion or breathing motion). Furthermore, even more than 100 years after the discovery of X-rays, the interpretation of medical images relies almost exclusively on human experts. All of the above mean that there is a strong need for increased automation and quantification in order to reduce costs, increase efficiency and patient-friendliness, and provide higher diagnostic and prognostic accuracy for clinical decision making.
At the same time, machine learning and deep learning techniques have made significant advances and have started to make a large impact in many real-world applications. The aim of this proposal is to exploit these advances to address the above challenges and to achieve a paradigm shift in the way information is extracted from medical images for diagnostics, therapy and follow-up. We will do this by developing a transformative and synergistic approach to medical imaging in which acquisition, reconstruction, analysis and interpretation will be tightly coupled, with bidirectional feedback between the different stages, in order to optimize the overall objective of the imaging pipeline: Extracting clinically useful and actionable information. To achieve this step change, the project aims to develop novel deep learning approaches for image acquisition, reconstruction, analysis and interpretation that can be trained in an end-to-end fashion, allowing fast and more efficient imaging.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.
- sciences médicales et de la santé médecine fondamentale anatomie et morphologie
- sciences sociales sociologie relations industrielles automatisation
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Nous sommes désolés... Une erreur inattendue s’est produite.
Vous devez être authentifié. Votre session a peut-être expiré.
Merci pour votre retour d'information. Vous recevrez bientôt un courriel confirmant la soumission. Si vous avez choisi d'être informé de l'état de la déclaration, vous serez également contacté lorsque celui-ci évoluera.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-ADG - Advanced Grant
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2019-ADG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
81675 MUENCHEN
Allemagne
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.