Descrizione del progetto
Ottimizzare la tecnologia che permetterà ai velivoli di seguire il flusso e viceversa
La separazione del flusso è uno dei problemi più importanti nella meccanica dei fluidi e in particolare nella progettazione e nel controllo aerospaziale. Quando il flusso d’aria «si stacca» dalla superficie del velivolo, si ha una riduzione della portanza e un aumento dell’attrito. Oltre ad aumentare le emissioni per via di un maggiore consumo di carburante, in casi estremi può influenzare la capacità del pilota di controllare l’aereo. Gli attuatori a getto pulsato sono una tecnologia promettente che può combattere e controllare la separazione. Il progetto PERSEUS, finanziato dall’UE, combinerà la modellizzazione numerica e i test nella galleria del vento per determinare i parametri ottimali per migliorare gli attuatori a getto pulsato.
Obiettivo
This project will combine wind tunnel experiments with numerical simulations and a sensitivity analysis to improve the control authority of pulsed jet actuators (PJAs) to separated turbulent flows over a 2.5D airfoil equipped with a flap. The target of this approach is to determine the minimum net-mass-flux required by pulsed jet actuators to compensate for the momentum deficit in the boundary layer. Controlling separation contributes to a decrease in the energy demand, leading to a decrease in CO2 emissions. It also improves the maneuvering capability, safety, and durability of the aircraft by reattaching the boundary layer and suppressing instabilities. The present work considers the sensitivity analysis, using a hierarchy of numerical models, using Reynolds-averaged Navier-Stokes simulations and large eddy simulations for both the flow inner and outer flow. These simulations will be calibrated using wind tunnel experiments by means of a data-assimilation method. The sensitivity analysis will then allow for determining the optimal parameters of the pulsed jet actuators such as operating frequency, output velocity together with their geometry including the actuators’ outflow aspect ratio, chordwise position and inter-actuator distance in the spanwise direction. The selected technology of PJAs will be an improved design of energy efficient fluidic oscillators capable of reaching high outflow velocities with operating frequencies ranging in the natural unstable frequencies of the outer flow. Novel manufacturing techniques such as xurography will also be tested to improve the cost and fabrication time of the PJAs, as well as their integration on the wing. Furthermore, the project will investigate the manufacturing and flow-control capabilities of dual-frequency fluidic oscillators, which may allow for further decreasing the net-mass-flux of the actuators by triggering instabilities with greater potential in altering boundary-layer separation.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
RIA - Research and Innovation actionCoordinatore
45067 Orleans Cedex 2
Francia