CORDIS - Resultados de investigaciones de la UE
CORDIS

Discovering genome-wide thiol-dependent metabolic regulation in photosynthesis with redox chemoproteomics

Descripción del proyecto

Salir de la oscuridad: comprender los flujos metabólicos en organismos eucariotas fototróficos

La mayoría conoce de la existencia de los ritmos circadianos, la oscilación interna que se ajusta al movimiento de rotación terrestre de 24 horas. Los procesos metabólicos guardan un vínculo estrecho con estos ritmos a fin de optimizar el uso de energía a lo largo del ciclo de luz y oscuridad. Asimismo, las transiciones entre oscuridad y luz son muy importantes para los fotótrofos, que obtienen su energía de la luz solar a través de la fotosíntesis. Estas transiciones provocan cambios en el estado redox de los componentes fotosintéticos que modulan los flujos metabólicos. El proyecto CHLARABIDOX, financiado con fondos europeos, estudia la dinámica panproteómica en respuesta a la luz en dos especies fototróficas (el alga verde «Chlamydomonas reinhardtii» y la planta «Arabidopsis thaliana»). La alta resolución temporal de los cambios metabólicos relacionados con reacciones redox inducidos por la luz podría ayudar a manipular procesos energéticos para la producción de biocombustibles e identificar modificaciones que ayuden a las plantas a adaptarse al cambio climático.

Objetivo

Most organisms exhibit a diurnal metabolic cycle, especially phototrophs, whose metabolism is strictly dependent on light. Dark-light transitions are accompanied by dramatic changes in the redox state of photosynthetic components, which drives redox-based post-translational modification of protein cysteines, whose oxidation state can considerably impact protein activity, and thus regulate metabolism. Given the central role of redox metabolism in biology, the operation of thiol-disulphide based switches are well-appreciated as a metabolic acclimation strategy, and the study of cysteine modifications in proteomes is a major interest of contemporary biology. The objective of CHLARABIDOX is to go beyond inventories of redox modified proteins by monitoring the proteome-wide dynamics of disulphide-dithiol status in the context of a diurnal metabolic cycle in phototrophic eukaryotes, specifically, the green alga Chlamydomonas reinhardtii and the land plant Arabidopsis thaliana. An innovative chemoproteomic isoTOP-ABPP approach will be used in an experimental design with deep temporal resolution to capture a good fraction of the proteome with site specificity and quantitative information about reactivity. The discoveries will be made in the context of a body of literature on thioredoxin-dependent redox regulation of central carbon metabolism, which will serve as a priori validation. The outcome of the project is a proteome-wide view of the operation of regulatory redox sensors, anchored to accompanying rich datasets on physiology, metabolic potential, transcriptomics, proteomics and central metabolites, which would inform the operation of light-driven metabolic networks. Both systems are compatible with downstream modelling of diurnal metabolic fluxes and validation by reverse genetics approaches. A long term impact on strategies for manipulating metabolism for biofuels production, or manipulating photosynthesis for better acclimation to climate change is also envisioned.

Coordinador

UNIVERSIDAD DE SEVILLA
Aportación neta de la UEn
€ 263 732,16
Dirección
CALLE S. FERNANDO 4
41004 Sevilla
España

Ver en el mapa

Región
Sur Andalucía Sevilla
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 263 732,16

Socios (1)