European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Discovering genome-wide thiol-dependent metabolic regulation in photosynthesis with redox chemoproteomics

Descrizione del progetto

Uscire dalle tenebre: comprendere i flussi metabolici in fototrofi eucarioti

La maggior parte di noi conosce i ritmi circadiani, un tempo oscillatorio interno che si conforma con la rotazione di 24 ore della Terra. I processi metabolici sono fortemente connessi a tali ritmi per ottimizzare il consumo energetico nel corso del ciclo luce-buio. Analogamente, le transizioni buio-luce sono molto importanti per i fototrofi, che ottengono la loro energia dalla luce solare tramite la fotosintesi. Le transizioni buio-luce provocano cambiamenti nello stato di ossidoriduzione dei componenti fotosintetici che modulano i flussi metabolici. Il progetto CHLARABIDOX, finanziato dall’UE, studia le dinamiche a livello del proteoma in risposta alla luce in due specie fototrofiche (l’alga verde Chlamydomonas reinhardtii e la pianta Arabidopsis thaliana). L’alta risoluzione temporale dei cambiamenti metabolici legati all’ossidoriduzione indotta dalla luce potrebbe contribuire a manipolare i processi energetici per la produzione di biocarburanti e a individuare modifiche che favoriscono l’adattamento delle piante al cambiamento climatico.

Obiettivo

Most organisms exhibit a diurnal metabolic cycle, especially phototrophs, whose metabolism is strictly dependent on light. Dark-light transitions are accompanied by dramatic changes in the redox state of photosynthetic components, which drives redox-based post-translational modification of protein cysteines, whose oxidation state can considerably impact protein activity, and thus regulate metabolism. Given the central role of redox metabolism in biology, the operation of thiol-disulphide based switches are well-appreciated as a metabolic acclimation strategy, and the study of cysteine modifications in proteomes is a major interest of contemporary biology. The objective of CHLARABIDOX is to go beyond inventories of redox modified proteins by monitoring the proteome-wide dynamics of disulphide-dithiol status in the context of a diurnal metabolic cycle in phototrophic eukaryotes, specifically, the green alga Chlamydomonas reinhardtii and the land plant Arabidopsis thaliana. An innovative chemoproteomic isoTOP-ABPP approach will be used in an experimental design with deep temporal resolution to capture a good fraction of the proteome with site specificity and quantitative information about reactivity. The discoveries will be made in the context of a body of literature on thioredoxin-dependent redox regulation of central carbon metabolism, which will serve as a priori validation. The outcome of the project is a proteome-wide view of the operation of regulatory redox sensors, anchored to accompanying rich datasets on physiology, metabolic potential, transcriptomics, proteomics and central metabolites, which would inform the operation of light-driven metabolic networks. Both systems are compatible with downstream modelling of diurnal metabolic fluxes and validation by reverse genetics approaches. A long term impact on strategies for manipulating metabolism for biofuels production, or manipulating photosynthesis for better acclimation to climate change is also envisioned.

Coordinatore

UNIVERSIDAD DE SEVILLA
Contribution nette de l'UE
€ 263 732,16
Indirizzo
CALLE S. FERNANDO 4
41004 Sevilla
Spagna

Mostra sulla mappa

Regione
Sur Andalucía Sevilla
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 263 732,16

Partner (1)