Descrizione del progetto
Comprendere la riduzione dello strato di ozono causata dalle eruzioni vulcaniche
Lo strato di ozono stratosferico assorbe pericolose irradiazioni UV, proteggendo la salute umana e l’agricoltura. Dal momento che cambiamenti anche minimi possono provocare danni gravi, è importante capire la chimica alla base dell’assottigliamento dell’ozonosfera. Sebbene il fatto che la riduzione dell’ozonosfera sia dovuta alle emissioni delle attività umane sia comunemente accettato, anche le eruzioni vulcaniche rappresentano una seria preoccupazione, poiché pare che in futuro possano rappresentare la principale perturbazione dello strato di ozono. Il progetto SOLVE, finanziato dall’UE, intende determinare l’impatto delle iniezioni di alogeni nella stratosfera sullo strato di ozono. Applicando metodi di laboratorio e di chimica quantistica integrati in un modello chimico e climatico globale, il progetto definirà la cinetica delle specie contenenti bromo per esaminare i meccanismi delle reazioni alogene.
Obiettivo
The stratospheric ozone layer absorbs harmful UV irradiation, protecting life on Earth. Only small changes are needed for significant damage to human health and agriculture, making it essential to understand the chemistry behind ozone depletion. Most of the ozone depletion has been caused by man-made emissions of the CFCs and halons, which are now banned through the Montreal Protocol and its amendments. However, due to the long-lived nature of these species, full recovery of the ozone layer is still decades away. In a changing climate, stratospheric composition, temperature and dynamics may be significantly altered, changing the catalytic ozone depletion in the future. Furthermore, new concerns regarding the ozone layer have emerged, with explosive volcanic eruptions possibly causing the largest perturbation to the ozone layer in the future. In this project, I will use different methods to determine the impact of halogen injections into the stratosphere on the ozone layer, determining the kinetics of bromine-containing species using laboratory and quantum chemical methods and incorporating them into a global chemistry and climate model. The first two years, I will be at Harvard, where I will use different atmospheric models to investigate the stratospheric impact of volcanic eruptions for a variety of future climate scenarios. I will also be carrying out experiments using cavity enhanced absorption spectroscopy to determine the kinetics of an atmospheric reservoir species for reactive bromine in the atmosphere. In the last year of the project I will be at University of Copenhagen and carry out experiments with a cold matrix setup with Fourier transform infrared spectroscopy to investigate the reaction. Throughout the project, I will determine the mechanisms of halogen reactions at the molecular level using quantum chemical calculations. I will introduce the results from the kinetic experiments and quantum calculations into the models as they become available.
Campo scientifico
- natural sciencesearth and related environmental sciencesatmospheric sciences
- natural sciencesearth and related environmental sciencesenvironmental sciencesozone depletion
- natural sciencesphysical sciencesopticsspectroscopyabsorption spectroscopy
- natural scienceschemical sciencesinorganic chemistryhalogens
- agricultural sciencesagriculture, forestry, and fisheriesagriculture
Programma(i)
Argomento(i)
Meccanismo di finanziamento
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinatore
1165 Kobenhavn
Danimarca