Project description DEENESFRITPL Gaining insight into soil response to a changing climate Soil carbon emissions are susceptible to climate change but can be reduced with new land management practices, provided soil carbon–climate feedback outcomes can be predicted. However, predictions from current large-scale soil carbon models differ greatly and reveal large uncertainties in the processes involved. One uncertainty is the effect of change in precipitation regimes on soil organic matter decomposition mediated by soil microorganisms. The EU-funded GLOBALECOEVO project aims to integrate variable decomposition–moisture functions into a large-scale soil carbon model to reflect precipitation history and carbon substrate influence on microbial responses to changes in soil moisture. The model used to calculate these functions will account for both ecological and evolutionary processes. The project will shed further light on soil response to climate change. Show the project objective Hide the project objective Objective Soil is both the largest sink and source of organic carbon (C) exchanged with the atmosphere. These exchanges result from biological processes, the primary source being the decomposition of soil organic matter (SOM), which is controlled by physical factors such as climate. As such, soil C emissions are very vulnerable to climate change but can also be reduced with new land management practices if we can predict the outcomes of soil carbon-climate feedbacks. However, predictions from the existing large-scale soil C models strongly diverge, and reveal large uncertainties in the processes and controls at play. One of these uncertainties is the effect of change in precipitation regimes on SOM decomposition mediated by soil microorganisms. Functions describing the decomposition response of soil carbon to soil moisture are static in current large-scale models, yet recent empirical studies show that decay responses under new soil moisture conditions can change due to shifts in microbial communities. Recent evidence suggests that evolution is a key processes driving these shifts in microbial communities. This project proposes to integrate variable decomposition-moisture functions into a large-scale soil C model to reflect precipitation history and carbon substrate influence on microbial responses to changing soil moisture. These functions will be calculated from a mechanistic microbial model that accounts for both ecological and evolutionary processes. The mechanistic model will be an updated version of the trait-based model DEMENT developed by the fellow’s supervisor at the partner institution (UC Irvine). The moisture response functions will be integrated into a commonly used soil carbon model, RothC, that has been incorporated into the global land surface model (ORCHIDEE) of the host institution (LSCE). Fields of science natural sciencesbiological sciencesevolutionary biologynatural sciencesearth and related environmental sciencesatmospheric sciencesclimatologyclimatic changessocial scienceseconomics and businessbusiness and managementnatural sciencesbiological sciencesmicrobiology Keywords Global soil carbon Drought Moisture Microbe Evolution Modeling Metacommunity Decomposition Biogeochemical model Trait-based model Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2019 - Individual Fellowships Call for proposal H2020-MSCA-IF-2019 See other projects for this call Funding Scheme MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF) Coordinator UNIVERSITE DE VERSAILLES SAINT-QUENTIN-EN-YVELINES. Net EU contribution € 257 619,84 Address Avenue de paris 55 78035 Versailles France See on map Region Ile-de-France Ile-de-France Yvelines Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Partners (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all Partner Partner organisations contribute to the implementation of the action, but do not sign the Grant Agreement. THE REGENTS OF THE UNIVERSITY OF CALIFORNIA United States Net EU contribution € 0,00 Address Franklin street 1111 12 floor 94607 Oakland ca See on map Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 165 265,92