Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Discretization and adaptive approximation of fully nonlinear equations

Description du projet

De nouvelles approximations permettent l’application de puissants solveurs conventionnels

Les équations différentielles partielles (EDP) sont fondamentales pour décrire le monde qui nous entoure. Elles expliquent mathématiquement comment un phénomène donné évolue en fonction des changements affectant d’autres facteurs. Elles peuvent modéliser les dynamiques liées aux échanges gazeux dans le système circulatoire, aux variations du marché boursier et à la propagation des rayons X dans les matériaux. Les EDP entièrement non linéaires constituent un cas particulièrement délicat pour lequel les solutions conventionnelles peuvent ne pas exister ni même être définies. Le projet DAFNE, financé par l’UE, jettera les bases de la mise en œuvre d’approches de solution utilisant de puissantes méthodes d’éléments finis ayant un impact dans des domaines allant de la physique et de la géométrie aux phénomènes de transport et à la finance.

Objectif

Fully nonlinear partial differential equations (PDE) arise in many applications ranging from physics to economy. They are different from PDEs in mechanics, and the PDE theory relies on the generalized solution concept of so-called viscosity solutions. Monotone finite difference methods (FDM) are provably convergent for approximating viscosity solutions, but are restricted to regular meshes and low-order approximations, thus having limitations in resolving realistic geometries or dealing with local mesh refinement. As viscosity solutions are lacking smoothness properties in general, adaptive approximations are desirable. In contrast to FDM, finite element methods (FEM) offer the possibility of high-order approximations with flexibility in adaptive and automatic mesh design. However, provably convergent FEM formulations for viscosity solutions to nonvariational problems are as yet unknown.

With a background in the numerical analysis of PDEs, especially the theory of FEM and adaptive algorithms, DAFNE aims at laying the theoretical and practical foundation for the application of FEM and automatic mesh-refinement algorithms to fully nonlinear equations. The focus is on the large class of Hamilton-Jacobi-Bellman (HJB) equations. They originated from stochastic control problems, but more generally comprise many classical and relevant equations like Pucci's equation or the Monge-Ampre equation
with applications in finance, optimal transport, physics, and geometry.

The novel approach is to estimate local regularity properties through the control variable in the HJB formulation. This (a) gives rise to new regularization strategies and (b) indicates where the mesh needs to be refined. Both achievements are key to the design of a new FEM formulation.

The project is at the frontiers of PDE analysis, numerical analysis, and scientific computing. The long-term goal is to establish the first convergence proofs for adaptive FEM simulations of fully nonlinear phenomena.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-STG - Starting Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2020-STG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 453 937,00
Adresse
FÜRSTENGRABEN 1
07743 JENA
Allemagne

Voir sur la carte

Région
Thüringen Thüringen Jena, Kreisfreie Stadt
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 453 937,00

Bénéficiaires (1)

Mon livret 0 0