Descrizione del progetto
Trasformare la CO2 in plastica in un unico passaggio
La conversione della CO2 in polietilene, la plastica più diffusa, può aiutare a compensare le emissioni atmosferiche che contribuiscono al riscaldamento globale. Il polietilene non è il materiale più rispettoso dell’ambiente, ma ancora non ha un sostituto universale. Produrre polietilene dalla CO2 abbasserebbe il suo impatto ambientale riducendo la richiesta di combustibili fossili. La conversione della CO2 in polietilene è un processo a più passaggi che include la conversione catalitica della CO2 in etilene e la polimerizzazione in polietilene mediante due diversi catalizzatori. Il progetto CO2Polymerisation, finanziato dall’UE, intende progettare un complesso catalizzatore per convertire direttamente la CO2 in polietilene attraverso una serie integrata e ininterrotta di reazioni catalitiche in fase acquosa. Per raggiungere questo traguardo, si intraprenderà un’analisi chimica quantistica del percorso di reazione e una modellizzazione della dinamica di reazione su vari catalizzatori.
Obiettivo
The global production of polyethylene is over 100 million tones annually. Carbon dioxide is a major cause of global warming but at the same time, it is also an abundant feedstock for hydrocarbon energy fuels. Electrochemical reduction of CO2 into valuable chemical feedstocks such as polyethylene is a highly enticing challenge for simultaneous settling of energy and environmental issues.
Currently, CO2 conversion to polyethylene occurs through an indirect two-step process including CO2 catalytic conversions to ethylene (CO2 hydrogenation) and ethylene to polyethylene (ethylene polymerization) using two different catalysts, separately. The novelty of my research is constructing a bifunctional catalyst for CO2 direct conversion to polyethylene through a cascade of electro-reduction–polymerization catalysis in the presence of water. So far, a catalyst that sequentially transforms CO2 into polyethylene has not yet been presented. Manifold catalysts have been demonstrated as potential candidates for CO2 polymerization to polyethylene. The state-of-the-art catalysts as constituents of the proposed bifunctional catalyst would be Copper and Palladium. Cu is responsible for binding *CO intermediates and converting them into C2H4 and Pd is highlighted for ethylene polymerization after Ziegler-type and metallocene-type catalysts. Using computational software packages, I will develop a multiscale and multiphysics model of direct CO2 electrochemical reduction to polyethylene over Cu-Pd bifunctional catalyst to predict the intermediates and products. To achieve this goal, I will carry out a quantum chemical analysis of the reaction pathway, a microkinetic model of the reaction dynamics, and a continuum model for mass transport of all species through the electrolyte. In parallel, computational achievements will be executed experimentally to produce a creative bifunctional catalyst from merging two different catalysts for the CO2 cascade transformation to polyethylene directly.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- natural scienceschemical sciencesinorganic chemistrytransition metals
- natural scienceschemical sciencescatalysis
- natural scienceschemical sciencesorganic chemistryaliphatic compounds
- engineering and technologyenvironmental engineeringenergy and fuels
- natural sciencescomputer and information sciencescomputational sciencemultiphysics
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinatore
1000 Ljubljana
Slovenia