Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

MAgneto-elastic coupling eXploitation in Bulk Acoustic Resonators

Descrizione del progetto

Le onde di spin condotte dal suono promettono bene per i dispositivi a micro-onde efficienti dal punta di vista energetico

Le onde di spin che propagano turbolenze nell’ordinamento dei materiali magnetici potrebbero offrire un modo per trasmettere ed elaborare informazioni con una maggiore efficienza e un più basso consumo energetico nei dispositivi mobili. Una recente ricerca ha dimostrato che tali oscillazioni possono essere controllate con le onde sonore. Questo abbinamento può essere sfruttato per fornire interfacciamenti di micro-onde efficienti dal punto di vista energetico per le onde di spin, cruciali per sviluppare dispositivi a micro-onde magnetici. Il progetto MAXBAR, finanziato dall’UE, intende integrare segnali di onde di spin a bassa energia con i risonatori a onde acustiche più moderni, diffusamente impiegati nei sistemi di comunicazione a radio frequenza, per distinguere tra segnali a diverse frequenze. Per raggiungere questi obiettivi, il progetto condurrà una ricerca su cui confluiranno nanomagnetismo, acustica, ingegneria delle micro-onde e sistemi microelettromeccanici.

Obiettivo

There is an ever increasing amount of data that needs to be transmitted, processed, and stored by mobile communication technologies like today’s smartphones and tomorrow’s numerous connected devices. Presently, the raw measurement signals need to be amplified, pre-conditioned, and converted to digital signals before they can be processed. Thus, there is clear impetus to supplement next generation radio technologies with analog signal processing functionalities to perform computation directly on the measured signals. By conducting research at the interface between nanomagnetism, acoustics, microwave engineering and micro-electromechanical systems, MAXBAR aims to integrate low power spin-wave signal processing capabilities with state-of-the-art acoustic wave resonators widely used in RF communication systems to distinguish between signals at different frequencies. It is motivated by the premise that the coupling between spin-waves and acoustic waves in nanosystems can be leveraged (i) to overcome the intrinsic limitations plaguing acoustic wave technology, and (ii) to simultaneously deliver an energy efficient microwave interface for spin waves – the holy grail of magnonics. The primary objective is to establish a platform in which strongly hybridized magneto-elastic resonant modes enables new technological functionalities, such as the tunability of bulk acoustic wave filters and the development of non-reciprocity in acoustical wave based delay lines. The project builds upon the host institution’s expertise in microwave measurements of spin-wave propagation, interference processes and magnetization dynamics, while relying on next-generation acoustic wave resonators developed at the secondment institute to demonstrate its objectives. The applicant is an expert in the design, fabrication and characterization of nanomechanical microwave devices and will thus complement its skills by adding nanomagnetism and acoustics in his competences.

Coordinatore

UNIVERSITE PARIS-SACLAY
Contribution nette de l'UE
€ 196 707,84
Indirizzo
BATIMENT BREGUET - 3 RUE JOLIOT CURIE
91190 Gif-Sur-Yvette
Francia

Mostra sulla mappa

Regione
Ile-de-France Ile-de-France Essonne
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 196 707,84