Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Random Matrices, Random Graphs and Circular Elements

Descripción del proyecto

Estudio de las matrices aleatorias

Las matrices aleatorias describen clases de variables aleatorias muy correlacionadas cuyas estadísticas se alejan de las estadísticas gaussianas. El proyecto RanMatRanGraCircEl, financiado con fondos europeos, tiene por objeto expandir los conocimientos actuales sobre las matrices aleatorias. El proyecto estudiará las propiedades espectrales de las matrices aleatorias cuando el tamaño de la matriz aumenta. Además, determinará la densidad asintótica de los valores propios de matrices aleatorias no normales con entradas correlacionadas de expectativa general y la medición de Brown de elementos circulares operadores valuados. También se analizarán los espectros de gráficos aleatorios. Para lograr sus objetivos, el proyecto combinará los análisis espectral y variacional, teoría de probabilidades (ecuaciones diferenciales estocásticas, límites de la gran desviación) y física matemática (ecuaciones autoconsistentes).

Objetivo

Random matrix statistics are a paradigm for the collective behaviour of many strongly correlated random variables. The proposed projects will fundamentally advance our knowledge about random matrices in novel directions.

We study spectral properties of random matrices when the matrix size becomes large. More specifically, we establish the universality of the fluctuations of the smallest singular value of almost square random matrices with independent entries. Moreover, we determine the asymptotic eigenvalue density of non-normal random matrices with correlated entries of general expectation and the Brown measure of operator-valued circular elements. We also obtain a central limit theorem for the difference of the linear statistics of a matrix with independent, identically distributed entries and its minor. Furthermore, we analyse the spectra of random graphs. Specifically, a transition in the eigenvalue fluctuations of very sparse Erdos-Renyi graphs, the eigenvector delocalisation of directed Erdos-Renyi graphs as well as the extreme eigenvalues and eigenvectors of preferential attachment graphs. Finally, we investigate a variational problem motivated by wireless communication.

The techniques proposed for these projects comprise a variety of tools from analysis (spectral theory, variational methods), probability theory (stochastic differential equations, large deviation bounds) and mathematical physics (self-consistent equations). For the purpose of these projects, the tools mentioned above will be developed further.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-MSCA-IF-2019

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

UNIVERSITE DE GENEVE
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 178 207,68
Dirección
RUE DU GENERAL DUFOUR 24
1211 Geneve
Suiza

Ver en el mapa

Región
Schweiz/Suisse/Svizzera Région lémanique Genève
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 178 207,68

Socios (1)

Mi folleto 0 0