Skip to main content
European Commission logo
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Machine learning and the physics of complex and disordered systems

Projektbeschreibung

Wie maschinelles Lernen zum Superwerkzeug der physikalischen Forschung wird

Maschinelles Lernen bedeutet, dass künstliche Systeme, etwa Computeralgorithmen, durch Erfahrung Wissen generieren und sich automatisch verbessern. Damit können nachweislich komplexe technische Probleme bei der Bilderkennung, der automatisierten Übersetzung und im Bereich der Spiele gelöst werden. Da durch maschinelles Lernen Muster in hochdimensionalen Daten erkennbar und komplizierte funktionale Zusammenhänge auf wirkungsvolle Weise annäherbar sind, werden nun auch Anwendungen in der theoretischen Physik in Erwägung gezogen. Ziel des EU-finanzierten Projekts COMPLEX ML ist, diese Beziehung zwischen maschinellem Lernen und physikalischer Forschung zu vertiefen. Das Forschungsteam wird anhand von Ideen und Methoden aus der Physik der ungeordneten Systeme die Leistungsfähigkeit und das Training modernster Algorithmen des maschinellen Lernens verbessern. Zudem werden Verfahren des maschinellen Lernens mit modernen Methoden der computergestützten Physik kombiniert, um neue Instrumente für ungeordnete Systeme zu entwickeln.

Ziel

Machine learning (ML) has proven capable of tackling difficult engineering problems in image recognition and automated translation, but even more impressively in domains where traditional algorithmic approaches had struggled, such as game playing. Though the relations between ML and physics are decades old, it only recently attracted a widespread attention of scientists in many subfields of theoretical physics due to its ability to identify patterns in high-dimensional data, and to efficiently approximate complicated functional relationships. At the same time, the empirically oriented philosophy of ML is very different from that of fundamental sciences: a trained model often offers little insights into the qualitatively important aspects of the problem, how the solution was arrived at, what are the guarantees of correctness, and, crucially, how to generalize it. Bridging this conceptual gap is thus of fundamental importance, if ML is to become a powerful and controlled tool in physics research. This interdisciplinary projects aims to bring about successful development and application of ML methods resulting in qualitatively new insights in physics by following a twofold strategy. On the one hand, the performance and training of state-of-the-art ML algorithms will be improved using methods of complex and disordered systems. Specific problems targeted will include novel reinforcement learning schemes, and training of binary neural networks, with input from industrial R&D researchers. On the other, cutting edge ML techniques, particularly those with a strong underpinning in information theory, will be combined with modern computational physics methods to develop new tools for disordered systems. This is motivated by the possibility of using them to study soft materials, providing better understanding of these ubiquitous but complex systems.

Koordinator

UNIVERSITAT ZURICH
Netto-EU-Beitrag
€ 260 840,64
Adresse
RAMISTRASSE 71
8006 Zurich
Schweiz

Auf der Karte ansehen

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 260 840,64

Partner (1)