Opis projektu
Uczenie maszynowe ma szansę stać się potężnym narzędziem w badaniach fizycznych
Uczenie maszynowe, nauka zajmująca się tworzeniem algorytmów, które poprawiają się automatycznie dzięki zyskiwanemu doświadczeniu, okazała się przydatna w rozwiązywaniu złożonych problemów inżynierskich związanych z rozpoznawaniem obrazów, automatyzacją procesu tłumaczenia i grami. Ostatnio rozważa się wykorzystanie jej w fizyce teoretycznej ze względu na zdolność do wskazywania wzorów w obrębie wielowymiarowych zbiorów danych i skutecznego przybliżania złożonych zależności funkcjonalnych. Celem finansowanego ze środków UE projektu COMPLEX ML jest zacieśnienie tej więzi między uczeniem maszynowym a badaniami z zakresu fizyki. Uczeni wykorzystają koncepcje i metody pochodzące z fizyki układów nieuporządkowanych, aby podnieść wydajność i jakość uczenia się najbardziej zaawansowanych algorytmów uczenia maszynowego. Ponadto metody uczenia maszynowego zostaną połączone ze współczesnymi metodami fizyki komputerowej w celu opracowania nowych narzędzi do opisu układów nieuporządkowanych.
Cel
Machine learning (ML) has proven capable of tackling difficult engineering problems in image recognition and automated translation, but even more impressively in domains where traditional algorithmic approaches had struggled, such as game playing. Though the relations between ML and physics are decades old, it only recently attracted a widespread attention of scientists in many subfields of theoretical physics due to its ability to identify patterns in high-dimensional data, and to efficiently approximate complicated functional relationships. At the same time, the empirically oriented philosophy of ML is very different from that of fundamental sciences: a trained model often offers little insights into the qualitatively important aspects of the problem, how the solution was arrived at, what are the guarantees of correctness, and, crucially, how to generalize it. Bridging this conceptual gap is thus of fundamental importance, if ML is to become a powerful and controlled tool in physics research. This interdisciplinary projects aims to bring about successful development and application of ML methods resulting in qualitatively new insights in physics by following a twofold strategy. On the one hand, the performance and training of state-of-the-art ML algorithms will be improved using methods of complex and disordered systems. Specific problems targeted will include novel reinforcement learning schemes, and training of binary neural networks, with input from industrial R&D researchers. On the other, cutting edge ML techniques, particularly those with a strong underpinning in information theory, will be combined with modern computational physics methods to develop new tools for disordered systems. This is motivated by the possibility of using them to study soft materials, providing better understanding of these ubiquitous but complex systems.
Dziedzina nauki (EuroSciVoc)
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.
- nauki przyrodnicze informatyka sztuczna inteligencja rozpoznawanie obrazów rozpoznawanie obrazów
- nauki przyrodnicze informatyka sztuczna inteligencja uczenie maszynowe uczenie przez wzmocnienie
- nauki przyrodnicze nauki fizyczne fizyka teoretyczna
- nauki przyrodnicze informatyka sztuczna inteligencja inteligencja obliczeniowa
- nauki humanistyczne filozofia, etyka i religia filozofia
Aby użyć tej funkcji, musisz się zalogować lub zarejestrować
Przepraszamy… podczas wykonywania operacji wystąpił nieoczekiwany błąd.
Wymagane uwierzytelnienie. Powodem może być wygaśnięcie sesji.
Dziękujemy za przesłanie opinii. Wkrótce otrzymasz wiadomość e-mail z potwierdzeniem zgłoszenia. W przypadku wybrania opcji otrzymywania powiadomień o statusie zgłoszenia, skontaktujemy się również gdy status ulegnie zmianie.
Słowa kluczowe
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.
Program(-y)
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
GŁÓWNY PROGRAM
Wyświetl wszystkie projekty finansowane w ramach tego programu -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Wyświetl wszystkie projekty finansowane w ramach tego programu
Temat(-y)
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.
System finansowania
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania
Zaproszenie do składania wniosków
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.
(odnośnik otworzy się w nowym oknie) H2020-MSCA-IF-2019
Wyświetl wszystkie projekty finansowane w ramach tego zaproszeniaKoordynator
Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.
8006 Zurich
Szwajcaria
Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.