Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Characterize corpus callosum-mediated local and global inhibitory effects with novel MRI-compatible photonic crystal fiber-based multifunction probe and wireless amplified NMR detector in rat brain

Descripción del proyecto

Desentrañar las interconexiones funcionales y neuronales entre los hemisferios derecho e izquierdo

El cuerpo calloso es una estructura en forma de C situada bajo la corteza compuesta de unos doscientos millones de axones que interconectan los hemisferios izquierdo y derecho. Integra señales sensoriales, motoras y cognitivas de ambos lados, y la alteración de esta conexión se ha relacionado con numerosas enfermedades y trastornos. Sin embargo, todavía se desconocen en gran medida los sustratos neuronales de las manifestaciones clínicas. El ambicioso proyecto financiado con fondos europeos CCMuPWA desarrolla técnicas muy sensibles para encontrar respuestas. Los científicos estimulan el cuerpo calloso en ratas libres a la vez que se utiliza resonancia magnética funcional (Rmf) multimodal avanzada y registros del calcio para caracterizar la actividad del encéfalo, incluida la dinámica del calcio de los astrocitos. Los resultados deberían ofrecer una imagen holística de las interacciones neurogliales del cuerpo calloso de los encéfalos normales y enfermos.

Objetivo

The structural anomalies of corpus callosum (CC) in patients are found highly-correlated with a wide range of disorders, e.g. epilepsy, autism, schizophrenia and mental retardation. However, it remains unclear about the causal contributions of CC-mediated functional changes to these disorders and exactly how the changes influence the local cortical circuitry. Lately, we have successfully combined fMRI with fiber optic mediated calcium recordings and optogenetics, i.e. multi-modal fMRI, to study the balance of excitation/inhibition in the barrel cortex in rats by pairing optogenetic corpus callosum activation with ascending thalamocortical activation. However, it remains challenging to maintain high sensitivity to the brain dynamic signal and better decipher CC-mediated unique cellular (neuron/astrocyte) or layer-specific contributions to the local cortical or global whole-brain fMRI signals. Therefore, the goal of this proposal is to optimize the multi-modal fMRI platform and to characterize the brain activity upon optogenetic callosal activation with higher spatial/temporal resolution using two cutting edge technologies, wireless amplified nuclear MR detector (WAND) and photonic crystal fiber (PCF). Previously, we have implanted a wireless RF coil into the rat body to achieve a high signal-to-noise ratio and spatial resolution for in vivo kidney imaging. The modified WAND will be incorporated into the multi-modal fMRI platform to achieve brain dynamic signal with enhanced sensitivity from the barrel cortex. Next, we will merge it with a novel PCF-based probe integrated calcium recording, optogenetic manipulation and fluid injection function. This proposal will merge the neuronal and astrocytic dynamic signals to the functional mapping, solve the challenges for CC study at multiple scales in the brain, enable novel applications of the multi-modal fMRI platform to better decipher the neuroglial interactions in normal and diseased animal models for future studies.

Coordinador

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Aportación neta de la UEn
€ 205 352,64
Dirección
HOFGARTENSTRASSE 8
80539 Munchen
Alemania

Ver en el mapa

Región
Bayern Oberbayern München, Kreisfreie Stadt
Tipo de actividad
Research Organisations
Enlaces
Coste total
€ 205 352,64

Socios (1)