CORDIS - Risultati della ricerca dell’UE
CORDIS

Fluctuations in Atomtronic Circuits

Descrizione del progetto

Circuiti quantistici con atomi neutri ultrafreddi

Dall’invenzione della prima batteria nel 1800, lo sfruttamento del flusso di elettroni ha stimolato innovazioni che hanno determinato impatti inestimabili sulla società. Più di recente, la prospettiva di circuiti che utilizzano correnti neutre di atomi ultrafreddi che fluiscono senza dissipazione al posto di elettroni carichi promette progressi analoghi, ma complementari, nelle tecnologie quantistiche. Questi circuiti atomtronici non solo consentirebbero rapidi progressi nello studio della fisica a molti corpi, ma aprirebbero anche la porta alla realizzazione di una pletora di dispositivi quantistici ad alta precisione, quali transistori e sensori quantistici, nonché sistemi di informazione quantistica. Il progetto FLAC, finanziato dall’UE, sta modellando il comportamento dinamico dei circuiti atomtronici per fornire le informazioni necessarie per la progettazione e lo sviluppo di circuiti atomtronici di prossima generazione.

Obiettivo

Ultracold quantum gases provide a unique highly-controllable platform to test fundamental aspects of quantum mechanics and to engineer novel quantum technologies and sensing devices. Recently, an emerging subfield called “atomtronics” is attracting increasing interest. Atomtronics aims to study neutral atomic circuits in optical and magnetic traps, in a manner analogous, but complementary, to electronic circuits.

This proposal focusses on two key aspects in such systems, namely on modelling the dynamics in ring-trap geometries – which benefit from the topological protection of (neutral) atomic currents – and characterizing the dynamical emergence and transfer of coherence in analogue neutral-atomic transistors. The novel feature of this project is the inclusion of experimentally-relevant fluctuations via appropriate state-of-the-art modelling schemes (namely the stochastic Gross-Pitaevskii and the Zaremba-Nikuni-Griffin model) which fully include coupling of coherent and incoherent modes and associated fluctuations, made possible through high-performance computing simulations.

The specific end-goal is to provide an in-depth characterisation of the dynamics of coherence in such circuits, thus both addressing open questions in the literature and identifying from the theoretical perspective the optimal specifications and parameter regimes which experimentalists could use to create an advanced atomic sensing device (atomic analogue of the superconducting quantum-interference device) and an atomic ring-based transistor. The proposed research has strong connections with existing experimental implementations, including the existing/planned setups at FORTH (Crete) [von Klitzing's group] and LKB (Paris) [Beugnon/Dalibard group], where the applicant will perform targeted secondments with the aim of becoming more familiar with experimental issues and devising potential strategies, thus contributing to potential future implementations of such devices.

Coordinatore

UNIVERSITY OF NEWCASTLE UPON TYNE
Contribution nette de l'UE
€ 212 933,76
Indirizzo
KINGS GATE
NE1 7RU Newcastle Upon Tyne
Regno Unito

Mostra sulla mappa

Regione
North East (England) Northumberland and Tyne and Wear Tyneside
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 212 933,76