Descripción del proyecto
Un catéter antimicrobiano
Las infecciones asociadas a los catéteres son causadas por biopelículas bacterianas y requieren un uso prolongado y considerable de antibióticos, lo que lleva a la aparición de cepas resistentes a los antimicrobianos que son difíciles de tratar. En respuesta a esto, científicos del proyecto PHOTO-IASIS, financiado con fondos europeos, proponen desarrollar nuevos catéteres con una nanocobertura antimicrobiana con capacidad de luchar contra las biopelículas. El recubrimiento consiste en un material activado por luz que destruye la biopelícula tras irradiarla con luz visible administrada en la superficie del catéter a través de una fibra óptica en la boca del catéter. Con solo presionar un botón, este diseño innovador combatirá infecciones asociadas a los catéteres y reducirá la resistencia a los antimicrobianos en los hospitales.
Objetivo
Catheter-associated infections are characterized by the formation of a bacterial biofilm on their surface and are a major clinical problem today with huge socioeconomic implications. As a result, apart from longer hospital admissions that dramatically increase healthcare costs, in order to fight these infections increased antibiotic drug doses are used. This approach places selective pressure on pathogens and, especially in nosocomial settings, facilitates the emergence of antimicrobial resistant bacteria that are more difficult, if at all possible, to treat. In fact, catheter-associated infections by antimicrobial resistant bacteria are potentially lethal, especially in patients with compromised immune system (cancer, HIV patients). So, there is an urgent societal and clinical need to reduce such infections. The target of this project is to re-engineer catheters that exhibit anti-biofilm properties due to the presence of an antimicrobial nanocoating. This coating will consist of a photo-active material that destroys the biofilm upon visible light irradiation. The light will be delivered on the catheter surface by an optical fiber through the catheter opening. This will enable biofilm destruction with a simple push of a button. The developed catheter here will revolutionize this field by reducing such catheter-associated infections, minimizing the emergence of drug resistant bacteria and improving the public health worldwide. The supervisor’s unique expertise in nanomaterial synthesis using flame spray pyrolysis (FSP), and in applying the resulting nanoparticles to specific biomedical applications combined with that of the applicant’s in nanoparticles and photocatalysis reassures a mutual benefit between the applicant and the host institute and enhances the feasibility of this proposal.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- medical and health scienceshealth sciencespublic health
- medical and health sciencesbasic medicineimmunology
- medical and health scienceshealth sciencesinfectious diseasesRNA virusesHIV
- medical and health sciencesbasic medicinepharmacology and pharmacypharmaceutical drugsantibiotics
- medical and health sciencesclinical medicineoncology
Programa(s)
Régimen de financiación
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinador
17177 Stockholm
Suecia