Projektbeschreibung
Entwicklung eines neuartigen photonischen Analog-Digital-Wandlersystems
Jüngste Fortschritte der IKT machen Signalspektrum-Bandbreiten von Hunderten GHz und sogar 1 THz erforderlich. Um eine ultraschnelle und flexible digitale Signalverarbeitung zu gewährleisten, müssen analoge Breitbandsignale mithilfe von Analog-Digital-Wandlern in einen Strom von Datenbits umgewandelt werden. Die zufälligen Elektronenfluktuationen in Halbleitern schränken jedoch die Leistungsfähigkeit elektronischer Analog-Digital-Wandler ein. Das EU-finanzierte Projekt CompADC zielt auf die Entwicklung eines neuartigen photonischen Analog-Digital-Wandlersystems ab, das duale optische Frequenzkämme in Chipgröße verwendet. So können Ultrabreitband-Funkfrequenzen und Mikrowellensignale mit einer Bandbreite von mehr als 100 GHz in Echtzeit digitalisiert werden. Die neue Technologie wird eine unerreichte Leistungsfähigkeit und eine Integration auf Chipebene für moderne Breitbandsignalverarbeitung und Kommunikationsanwendungen bereitstellen.
Ziel
Modern information and communication technology has been propelling the rapid expansion of signal spectrum bandwidth towards the level of hundreds of GHz and even 1 Terahertz. Such wideband analog signals produced in physical world must be converted to a stream of data bits via analog-to-digital conversion (ADC), for ultra-fast and flexible digital signal processing (DSP). However, the random electron fluctuations in semiconductors set a fundamental limitation on the performance of electronic (ADCs), leading to an inherent trade-off between the sampling accuracy and bandwidth. State-of-the-art electronic ADCs typically have only GHz-level analog bandwidth, which is becoming an increasingly severe limitation on high-speed DSP applications. Although the adoption of mode-locked lasers (MLLs) can overcome some limitations using the ultra-stable pulse train for precise time-domain sampling, the GHz-level repetition rate and the challenging integration of MLLs prevents any usability of photonics-assisted ADC in practical applications. In the CompADC project, I propose to develop a radically-new photonic ADC scheme using chip-scale dual optical frequency combs, enabling real-time digitization of ultra-wideband RF and microwave signals with a bandwidth of > 100 GHz. This envisaged performance is enabled by the emerging dissipative Kerr soliton (DKS) microcombs generated in SiN microresonators, which produces a new type of on-chip mode-locked emission of optical pulses with repetition rates exceeding 100 GH. These phase-locked dual microcombs (signal comb and local oscillator comb) will perform precise frequency-domain decomposition and parallel frequency down-conversion of ultra-wideband microwave signals to the detectable range of lower-speed electronics. This CompADC approach has the clear potential to offer unparalleled performance and chip-scale integration for modern ultra-wideband signal processing and communication applications.
Wissenschaftliches Gebiet
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringanalogue electronics
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsignal processing
- natural sciencesphysical scienceselectromagnetism and electronicssemiconductivity
- natural sciencesphysical sciencesopticslaser physics
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Aufforderung zur Vorschlagseinreichung
Andere Projekte für diesen Aufruf anzeigenFinanzierungsplan
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Koordinator
1015 Lausanne
Schweiz