European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Structural and thermophysical properties of quantum fluids adsorbed on nanostructured surfaces

Descrizione del progetto

Modellizzazione dell’adsorbimento di fluidi quantistici su superfici nanostrutturate

Il progetto QFluidsNano, finanziato dall’UE, prevede di sviluppare strumenti computazionali avanzati per eseguire calcoli meccanici quantistici accurati della struttura e delle proprietà termofisiche di fluidi atomici e molecolari adsorbiti su superfici nanostrutturate. Il progetto utilizzerà la teoria funzionale della densità del liquido per modellizzare il movimento nucleare delle particelle e valutare il potenziale di alcuni nanomateriali (strutture metalliche e organiche covalenti) per l’uso nello stoccaggio dell’idrogeno e nella separazione degli isotopi mediante setacciatura quantistica. Le simulazioni funzionali di densità proposte aiuteranno i ricercatori a sintetizzare, ottimizzare e testare nanocomponenti a un costo computazionale relativamente basso.

Obiettivo

The general aim of this project is the development of advanced computational models that enable affordable yet accurate quantum mechanical calculations of the structure and thermophysical properties of atomic and molecular fluids adsorbed on nanostructured surfaces.The proposed method is based on the liquid density functional theory (to treat the nuclear quantum dynamics) with the first principle evaluation of the interaction forces employing state-of-the-art electronic structure methods. These models will be subsequently applied to the computational investigation of macroscopic quantum effects on the adsorption isotherms, the isotopic selectivity on adsorption, particle diffusion, etc, of helium and hydrogen fluids adsorbed in nanoporous materials. We will focus on the characterization (via computational screening) of the influence of the structural and electronic properties (e.g. the size and geometry of the pores, the specific surface area, the topology of the electronic states) on the capacities of nanomaterials for hydrogen storage and isotope separation via quantum sieving.
The density functional simulations will provide a realistic representation of the nuclear motion underlying storage and sieving phenomena in the target nanomaterials (e.g. metal- and covalent-organic frameworks), and accurate estimations of strutural and thermodynamics properties of the adsorbed fluid, in situations where the computational cost of the standard numerical schemes becomes prohibitive. The insight provided by these calculations can be used to guide the experimental efforts on the investigation of the target systems, and on their applicability in the design of more efficient nanodevices. Consequently, they may lead to significant savings of energy and of natural resources, associated to the design, synthesis, optimization and testing of nanocomponents.

Coordinatore

UNIVERSITE PAUL SABATIER TOULOUSE III
Contribution nette de l'UE
€ 196 707,84
Indirizzo
ROUTE DE NARBONNE 118
31062 Toulouse Cedex 9
Francia

Mostra sulla mappa

Regione
Occitanie Midi-Pyrénées Haute-Garonne
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale
€ 196 707,84