CORDIS - EU research results
CORDIS

Proto-Opto-Electro-Mechanical Hybrid Systems for Generation-Next Bionic Devices

Project description

A first step into bionic systems: electron–proton hybrid transistors

Today, due to the changes in our lifestyle and common use of new technologies, a massive proliferation of electronic devices is observed. However, this new, unprecedented phenomenon poses environmental hazards created by the ever-growing amount of toxic electronic waste. The electronics industry must urgently introduce sustainable, environmentally friendly solutions. To that end, the EU-funded PROGENY project aims to design advanced, functional protonic materials to be used in revolutionary biomimetic devices and sensors branded as proto-opto-electro-mechanical systems (POEMS). The novelty design exploits natural, efficient and intrinsically sustainable biological systems, bringing a fundamental breakthrough in device and sensor innovation. In the TRL 3-4 phase, PROGENY will deliver and demonstrate the first bionic device with gated electron–proton hybrid transistors that can host living cells.

Objective

PROGENY targets a foundational and sustainable innovation, exploiting unique properties of designer soap films as advanced functional materials, to be used in fundamentally new type of biomimetic devices and sensors categorized as Proto-Opto-Electro-Mechanical Systems (POEMS).

A common soap film is uniquely characterized by a proton conducting, flexible, semipermeable, quasi 2-D aqueous phase, which doubles as a smooth (3.2Å roughness) and low defect substrate for self-assembled surfactant monolayers on its opposite surfaces. Synthetic surfactants are aliphatic oligomer tails modified with hydrophilic head groups, and have been traditionally designed for use as detergents or colloidal stabilizers. The scope of modifying 1D molecular wires and 2D conjugated polymers, to create novel surfactants, is wide open. These electronic molecules will be designed to significantly reduce surface tension in aqueous solution, self-assemble at water-gas interfaces, and mechanically stabilize a new class of electronic soap films, allowing radical innovations in POEMS.

PROGENY will consolidate an interdisciplinary team of pioneering European experts, and its seminal set of deliverables will be foundational to consequent R&D activities in POEMS. As a final demonstrator (TRL 3-4), we will deliver - Gated electron-proton hybrid transistors that can host living cells, as foundational precursors to bionic device prototypes targeted in Phase II. Within the project, new electronic surfactant molecules will be synthesized, characterized and modelled; new categories of electronic soap films will be characterized and tested; new devices will be designed and fabricated. In an environmentally responsible research effort, all new materials will be tested for eco-toxicological impact. Sustainability of POEMS technology and its socio-economic impact will be indicated by a prospective (ex-ante) life cycle assessment (LCA). PROGENY will also deliver a white paper and a basic business plan.

Call for proposal

H2020-FETOPEN-2018-2020

See other projects for this call

Sub call

H2020-FETOPEN-2018-2019-2020-01

Coordinator

TECHNISCHE UNIVERSITAET DRESDEN
Net EU contribution
€ 1 048 000,00
Address
HELMHOLTZSTRASSE 10
01069 Dresden
Germany

See on map

Region
Sachsen Dresden Dresden, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 1 048 000,00

Participants (9)