Project description
An RNA-based treatment for heart failure
Heart failure is associated with cardiac fibrosis or scarring, an unavoidable consequence of myocardial insult that affects diastolic and systolic function. Despite its great socioeconomic burden, there are no treatments to restore cardiac fibrosis and cure heart failure. The EU-funded MEGFIB project proposes to develop a new approach for treating selected heart failure patients, based on non-coding RNAs, which are emerging as important players in disease pathogenesis. Using oligonucleotides that target the meg3 long non-coding RNA in human cells and tissues, scientists hope to replicate their results in animal models and establish a new approach in heart failure care.
Objective
Cardiac fibrosis is a hallmark of and mechanistically involved in heart failure; a disease will high clinical unmet need and fundamental socioeconomic importance. Specific treatments of cardiac fibrosis are lacking. RNAs that do not code for proteins comprise a large portion of the human genome. These so-called noncoding RNAs are emerging as important players in disease pathogenesis, yet their functional roles are ill understood. Our group currently pioneered first clinical testings on noncoding RNA inhibitors in heart failure patients showing the enormous clinical translational potential of such next-generation therapeutics. We now aim to develop a new approach to treat selected heart failure patients, which show increased signs of cardiac fibrosis. Within the ERC grant LONGHEART we have identified a lncRNA meg3 to be a novel and innovative target in heart failure pathologies with fibrosis (Circ Res. 2017 Aug 18;121(5):575-583; Fig. 1). Importantly meg3 is well conserved between rodents and humans allowing translational development. Oligonucleotide-mediated silencing of Meg3 in human cardiac fibroblasts and in vivo in mice resulted in decreased cardiac fibrosis and improved diastolic performance of the heart. Within MEGFIB, we now aim to advance these valuable research results on meg3-based improvements of cardiac fibrosis in mice towards commercial proof-of-concept. Important next steps are a) translation of the efficacy to human cells and tissues and b) sophisticated market analysis, c) IP strategy development and d) business development activities to maximize the value of the projects’ results. The outcome of our activities will be consolidated into a business plan for presenting our proposition to strategic partners, such as Cardior Pharmaceuticals or venture capitalists (VCs). We are proposing a unique RNA-based approach that offers a new opportunity to revolutionize medical practice, improve patient care and will reduce costs in the heart failure care.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- medical and health sciences basic medicine pharmacology and pharmacy pharmaceutical drugs
- medical and health sciences basic medicine pathology
- natural sciences biological sciences genetics RNA
- medical and health sciences clinical medicine cardiology
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-POC-LS - ERC Proof of Concept Lump Sum Pilot
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-PoC
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
30625 Hannover
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.