Project description
A novel framework addresses open questions in the analysis of curved spaces
Euclidean geometry is concerned with flat space; in this space, the ascertainment that 'the shortest distance between two points is a line' mathematically refers to a unique line segment. In curved space, such as that created by rolling a flat piece of paper around a paper towel roll, or the Earth as a sphere, there may be more than one 'shortest curve' between any two points, such as the many longitude lines connecting the north and south poles. These surfaces are harder to study and describe than flat ones, and Riemannian geometry is used to do so. Sub-Riemannian geometry goes beyond classical Riemannian geometry, and in many cases, the latter fails to explain the former. The EU-funded GeoSub project is developing a novel framework that should help mathematicians address open questions in sub-Riemannian geometry of importance to numerous fields in mathematics, physics and engineering.
Objective
Sub-Riemannian spaces are geometrical structures that model constrained systems, and constitute a vast generalization of Riemannian geometry. They arise in control theory, harmonic and complex analysis, subelliptic PDEs, geometric measure theory, calculus of variations, optimal transport, and potential analysis.
In the last 10 years, a surge of interest in the study of geometric and functional inequalities on sub-Riemannian spaces revealed unexpected behaviours and intriguing phenomena that failed to fit into the classical schemes inspired by Riemannian geometry. In this project, I aim to develop a framework of geometric and functional interpolation inequalities adapted to sub-Riemannian manifolds, and to use this theory to tackle old and new problems concerning the geometric analysis of these structures.
The project focuses on the following interconnected topics: (i) the development of a unifying theory of curvature bounds including sub-Riemannian structures, (ii) the study of measure contraction properties of Carnot groups, (iii) applications to isoperimetric-type problems, and (iv) applications to the regularity of the sub-Riemannian heat kernel at the cut locus. The project adopts a unique approach combining methods from geometric control theory, optimal transport and comparison geometry that I developed in recent years, and which already allowed me and my collaborators to obtain important results in the field.
The project aims to achieve an ambitious unification program, solve long-standing problems, and explore new research directions in sub-Riemannian geometry, with an impact in several neighbouring areas, including geometric analysis on non-smooth spaces, analysis of hypoelliptic operators, geometric measure theory, spectral geometry. My long-term purpose is to build a leading research group in sub-Riemannian geometry, to significantly advance our understanding of Geometry under non-holonomic constraints.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics mathematical analysis functional analysis
- natural sciences mathematics pure mathematics geometry
- natural sciences mathematics pure mathematics mathematical analysis differential equations partial differential equations
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
34136 Trieste
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.