Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Geometric analysis of sub-Riemannian spaces through interpolation inequalities

Descrizione del progetto

Una nuova struttura affronta questioni aperte nell’analisi degli spazi curvi

La geometria euclidea riguarda lo spazio piatto; in questo spazio, l’accertamento che «la distanza più breve tra due punti è una linea» si riferisce matematicamente a un segmento di linea unico. Nello spazio curvo, come quello creato facendo rotolare un pezzo di carta piatto attorno a un rotolo di carta per cucina, o la Terra in quanto sfera, potrebbe esserci più di una «curva più corta» tra due punti qualsiasi, come le molte linee di longitudine che collegano i poli nord e sud. Queste superfici sono più difficili da studiare e descrivere rispetto a quelle piatte, e per farlo si usa la geometria riemanniana. La geometria sub-riemanniana va oltre la classica geometria riemanniana e, in molti casi, quest’ultima non riesce a spiegare la prima. Il progetto GeoSub, finanziato dall’UE, sta sviluppando una nuova struttura che dovrebbe aiutare i matematici ad affrontare questioni aperte nella geometria sub-riemanniana di importanza per numerosi campi della matematica, della fisica e dell’ingegneria.

Obiettivo

Sub-Riemannian spaces are geometrical structures that model constrained systems, and constitute a vast generalization of Riemannian geometry. They arise in control theory, harmonic and complex analysis, subelliptic PDEs, geometric measure theory, calculus of variations, optimal transport, and potential analysis.

In the last 10 years, a surge of interest in the study of geometric and functional inequalities on sub-Riemannian spaces revealed unexpected behaviours and intriguing phenomena that failed to fit into the classical schemes inspired by Riemannian geometry. In this project, I aim to develop a framework of geometric and functional interpolation inequalities adapted to sub-Riemannian manifolds, and to use this theory to tackle old and new problems concerning the geometric analysis of these structures.

The project focuses on the following interconnected topics: (i) the development of a unifying theory of curvature bounds including sub-Riemannian structures, (ii) the study of measure contraction properties of Carnot groups, (iii) applications to isoperimetric-type problems, and (iv) applications to the regularity of the sub-Riemannian heat kernel at the cut locus. The project adopts a unique approach combining methods from geometric control theory, optimal transport and comparison geometry that I developed in recent years, and which already allowed me and my collaborators to obtain important results in the field.

The project aims to achieve an ambitious unification program, solve long-standing problems, and explore new research directions in sub-Riemannian geometry, with an impact in several neighbouring areas, including geometric analysis on non-smooth spaces, analysis of hypoelliptic operators, geometric measure theory, spectral geometry. My long-term purpose is to build a leading research group in sub-Riemannian geometry, to significantly advance our understanding of Geometry under non-holonomic constraints.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-STG - Starting Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2020-STG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI DI TRIESTE
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 171 465,00
Indirizzo
VIA BONOMEA 265
34136 Trieste
Italia

Mostra sulla mappa

Regione
Nord-Est Friuli-Venezia Giulia Trieste
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 171 465,00

Beneficiari (1)

Il mio fascicolo 0 0