Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Unlikely Intersection and Uniform Bounds for Points

Descripción del proyecto

Estudios sobre los límites uniformes en los puntos racionales de las variedades algebraicas

El objetivo del proyecto UnIntUniBd, financiado con fondos europeos, es estudiar los límites uniformes de los puntos racionales y algebraicos. Abarcará la conjetura de Mazur sobre el número de puntos en las curvas, que implica los 2 límites fuertes siguientes: el número de puntos racionales en una curva proyectiva suave del género g de al menos 2 definidos sobre un campo numérico de grado d se limita por encima en términos de g, d y el rango de Mordell-Weil; y el número de puntos de torsión algebraica en una curva proyectiva suave del género g al menos 2 se limita por encima solo en términos de g. El proyecto también tiene por objeto generalizar el primer límite a las subvariedades de mayor dimensión de las variedades abelianas y, en última instancia, ampliar los límites a las variedades semiabelianas. Como técnicas fundamentales del proyecto, también se investigarán la trascendencia funcional y los problemas de intersección poco probables.

Objetivo

I propose to investigate the following long expected but widely open uniform bounds on rational and algebraic points. (1) Mazur’s conjecture on the number of points on curves, which implies the following two strong bounds: (1.i) the number of rational points on a smooth projective curve of genus g at least 2 defined over a number field of degree d is bounded above in terms of g, d and the Mordell- Weil rank; (1.ii) the number of algebraic torsion points on a smooth projective curve of genus g at least 2 is bounded above only in terms of g. (2) Generalize the bound in (1) to higher dimensional subvarieties of abelian varieties. (3) Extend the bounds to semi-abelian varieties. Compared with existing results, the Faltings height is no longer involved in the bounds. The proofs I propose are via Diophantine estimates. Functional transcendence and unlikely intersections on mixed Shimura varieties play important roles in the proofs. Hence as pre-requests and extensions of the three goals listed above, I will also continue investigating on functional transcendence and unlikely intersection theories as well as their potential other interesting applications in Diophantine geometry.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-STG - Starting Grant

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2020-STG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

GOTTFRIED WILHELM LEIBNIZ UNIVERSITAET HANNOVER
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 364 063,50
Dirección
WELFENGARTEN 1
30167 Hannover
Alemania

Ver en el mapa

Región
Niedersachsen Hannover Region Hannover
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 364 063,50

Beneficiarios (2)

Mi folleto 0 0