Project description
Targeting non-coding DNA for the development of innovative anticancer therapies
Functional non-coding regions of the genome play a critical role in gene expression regulation. Still, our knowledge of the disease-associated functional elements in the non-coding genome is limited. The EU-funded FIND-seq project proposes a multi-scale, general approach to study the role of non-coding sequences in the context of blood malignancies. The project will investigate non-coding sequences in which activation or repression in chromatin state is associated with drug resistance in chronic myelogenous leukaemia (CML). The research will focus on the alterations in the chromatin structure associated with imatinib resistance in CML. A better understanding of the non-coding regulatory changes in diseases will provide the basis for the development of innovative therapies targeting the non-coding genome.
Objective
Functional non-coding regions of the genome play a fundamental role in gene expression and are enriched for disease associated variants. Perturbation of non-coding regions harbouring disease-associated variants is now the rationale of ongoing clinical trials (e.g. NCT03432364), highlighting the translational potential of basic research in the non-coding space. However, our ability to systematically identify disease-associated functional elements in the non-coding genome, understand its grammar, and subsequently develop new therapies is limited. CRISPR-based pooled screens targeting non-coding elements in situ have been successful in uncovering complex gene regulatory architecture in a variety of biological systems. However, these approaches are limited to a few loci, lack of direct genotype-phenotype correlation, and do not target large chromatin structures that determine gene expression programs. To overcome these limitations, I propose a multi-scale approach platform that is generalizable to different cell types and phenotypes. Under this proposal, I will focus on the role of non-coding sequences in the context of blood malignancies. I will investigate non-coding sequences whose change in chromatin state (activation or repression) is associated with drug resistance in Chronic Myelogenous Leukemia (CML). I will study alterations in the chromatin structure (i.e. at chromatin loops or topologically associated domains) that are causal to imatinib resistance in CML. Finally, to learn enhancer grammar and mechanistically link non-coding variants to disease, I will focus on non-coding sequence variation in leukemia and dissect non-coding sequences at base pair resolution using dense mutagenesis coupled with long-reads sequencing. A deeper understanding of the non-coding regulatory architecture in diseases will provide the basis for development of innovative therapies targeting the non-coding genome.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences biological sciences genetics DNA
- medical and health sciences clinical medicine oncology leukemia
- natural sciences biological sciences genetics genomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1090 Wien
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.