Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Microseismicity Illuminates Subduction Zone Processes

Project description

Using small earthquakes to understand large ones

Subduction zones host the largest and most destructive earthquakes on this planet. Improving our understanding of the internal workings of these regions can thus eventually help to save lives and loss of property. In the EU-funded MILESTONE project, we will use background microseismicity, small earthquakes that continuously occur in subduction zones, to derive better resolved images of the structure and ongoing processes in four different subduction zones worldwide. We will develop a new, automated approach that combines large seismic datasets with machine learning approaches to identify the many thousands of such events that occur each year, most of which are too small to be felt by humans. The resulting archives of microearthquakes will be used to create a new generation of tools, such as models of plate interface coupling from the combined inversion of GPS data with seismicity constraints.

Objective

Background microseismicity in subduction zones contains important information on the geometry, kinematics and dynamics of subduction systems. Low-magnitude earthquakes on the plate interface can outline highly locked asperities and thus define the locus of potential future large earthquakes. Rates of aseismic processes like creep or slow slip can be estimated using swarm-like seismicity and/or repeating events, thus complementing geodetic approaches. At depths beyond the megathrust, microseismicity can give important clues to the distribution and motion of fluids, ongoing mineral reactions, as well as the thermal and rheological structure of the downgoing slab.
In this project, I propose to use existing large seismic data sets from four subduction zone settings to systematically harvest microseismicity at an unprecedented scale through the use of an innovative automated approach that combines new machine learning approaches into a comprehensive earthquake detection and location framework. This effort will yield consistently picked and located microearthquake catalogs of superior event numbers and spatial resolution, which will be the base for several research avenues with the following outcomes:
- high-resolution seismicity catalogs and new 3D plate interface and slab surface geometry models
- a new generation of plate interface locking models from combining permanent GPS data inversion with seismicity constraints
- highly resolved regional-scale tomographic images of subduction zones
- new models of petrology, phase changes and thermal structure across several downgoing plates
- a framework for the comparison of seismicity features between different subduction zones
The results from the proposed project will be a big leap towards understanding the physics of subduction zone earthquakes as well as deep fluid circulation and mineral phase changes in downgoing lithosphere. They will also serve as valuable input for future models of earthquake and tsunami hazard.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-STG

See all projects funded under this call

Host institution

GEOFYZIKALNI USTAV AV CR, V.V.I.
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 311 480,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 311 480,00

Beneficiaries (1)

My booklet 0 0