Descrizione del progetto
Il senso della probabilità degli esseri umani ha natura bayesiana?
L’inferenza bayesiana stima in maniera ottimale le probabilità a partire da dati limitati e imprecisi, prendendo in considerazione i livelli di incertezza. Il progetto NEURAL-PROB, finanziato dall’UE, propone l’idea che il senso della probabilità degli esseri umani sia bayesiano, sulla base della nozione che le stime della probabilità degli esseri umani siano accompagnate da livelli di sicurezza razionali che ne definiscono la precisione. Tale natura bayesiana del senso della probabilità umano limita la stima, la rappresentazione neurale e l’utilizzo delle probabilità. I ricercatori del progetto costruiranno la loro teoria grazie alla combinazione di psicologia, modelli di calcolo e neuroimaging. La caratterizzazione del senso della probabilità aiuterà a comprendere meglio come il cervello umano rappresenti il mondo con modelli interni probabilistici, come impari e prenda decisioni.
Obiettivo
Bayesian inference optimally estimates probabilities from limited and noisy data by taking into account levels of uncertainty. I noticed that human probability estimates are accompanied by rational confidence levels denoting their precision; I thus propose here that the human sense of probability is Bayesian. This Bayesian nature constrains the estimation, neural representation and use of probabilities, which I aim to characterize by combining psychology, computational models and neuro-imaging.
I will characterize the Bayesian sense of probability computationally and psychologically. Human confidence as Bayesian precision will be my starting point, I will test other formalizations and look for the human algorithms that approximate Bayesian inference. I will test whether confidence depends on explicit reasoning (with implicit electrophysiological measures), develop ways of measuring its accuracy in a learning context, test whether it is trainable and domain-general.
I will then look for the neural codes of Bayesian probabilities, leveraging encoding models for functional magnetic resonance imaging (fMRI) and goal-driven artificial neural networks to propose new codes. I will ask whether the confidence information is embedded in the neural representation of the probability estimate itself, or separable.
Last, I will investigate a key function of confidence: the regulation of learning. I will test the implication of neuromodulators such as noradrenaline in this process, using both within and between-subject variability in the activity of key neuromodulatory nuclei (with advanced fMRI), the cortical release of noradrenaline during learning and its receptor density (with positron-emission tomography) and test for causality with pharmacological intervention.
Characterizing the sense of probability has broad implications: it should improve our understanding of the way we represent our world with probabilistic internal models, the way we learn and make decisions.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
ERC-STG - Starting Grant
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2020-STG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
75015 Paris
Francia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.