Project description
Randomness in multiscale partial differential equations - mathematics of random media
TPartial differential equations (PDEs) with multiple scales arise in the mathematical description of many physical phenomena. The EU-funded RandSCALES project is concerned with the pivotal role of randomness in multiscale PDEs. Mathematical models for materials with random microstructure naturally lead to such multiscale PDEs with randomness, yet central questions in the field are still unresolved. The project will focus in particular on the quantitative derivation of effective models for nonlinear materials with random microstructure, the design of numerical homogenisation schemes in the absence of scale separation, and the stabilising effect of randomness on evolutionary PDEs.
Objective
The identification and justification of scaling limits is a central theme in modern PDE theory, reflected for instance in the theories of homogenization and singular limits. In many multiscale PDE models, randomness plays a crucial role: In random media, the quantitative homogenization process is driven by decorrelation and concentration of measure; for ill-posed evolution problems like many interface evolution equations, random noise may provide a regularization, potentially restoring well-posedness and hence approximability by numerical schemes. In the present project, we pursue a program to achieve a deeper understanding of the role of randomness in multiscale PDEs. We focus on three important, yet largely unexplored, aspects:
A) We develop a quantitative stochastic homogenization theory for nonlinear material models, ranging from variational models for brittle fracture over models from statistical mechanics to the motion of interfaces in random media. A key challenge is posed by the non-convex structure of the models, giving rise to rough energy landscapes and the emergence of complex physical phenomena.
B) We establish generalizations of homogenization in the absence of scale separation, a problem naturally posed in the framework of random media. By developing new high-dimensional approximability results, we will contribute to uncertainty quantification and the design of numerical homogenization schemes with lower computational complexity.
C) We develop a theory of stability and approximability of interface evolution problems past topology changes, a setting in which randomness may lead to the regularization of ill-posed evolutions and thereby allow for the derivation of error estimates for numerical approximation schemes. By relying on energy methods, we avoid the use of comparison principles, greatly enhancing the scope of applicability of our theory.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics topology
- natural sciences mathematics pure mathematics mathematical analysis differential equations partial differential equations
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3400 KLOSTERNEUBURG
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.