Descripción del proyecto
Aleatoreidad en ecuaciones diferenciales parciales multiescala: las matemáticas de medios aleatorios
Las ecuaciones diferenciales parciales (EDP) con múltiples escalas se plantean en la descripción matemática de una gran variedad de fenómenos físicos. El objetivo del proyecto financiado con fondos europeos RandSCALES es estudiar el papel esencial de la aleatoriedad en las EDP multiescala. Los modelos matemáticos de materiales con microestructura aleatoria conducen naturalmente a tales EDP multiescala con aleatoriedad. Aun así, existen muchas preguntas sin respuesta en este ámbito. En concreto, el proyecto se centrará en la derivación cuantitativa de modelos eficaces para materiales no lineales con microestructura aleatoria, el diseño de esquemas de homogeneización numérica en ausencia de separación de escalas y en el efecto estabilizador de la aleatoreidad en las EDP evolutivas.
Objetivo
The identification and justification of scaling limits is a central theme in modern PDE theory, reflected for instance in the theories of homogenization and singular limits. In many multiscale PDE models, randomness plays a crucial role: In random media, the quantitative homogenization process is driven by decorrelation and concentration of measure; for ill-posed evolution problems like many interface evolution equations, random noise may provide a regularization, potentially restoring well-posedness and hence approximability by numerical schemes. In the present project, we pursue a program to achieve a deeper understanding of the role of randomness in multiscale PDEs. We focus on three important, yet largely unexplored, aspects:
A) We develop a quantitative stochastic homogenization theory for nonlinear material models, ranging from variational models for brittle fracture over models from statistical mechanics to the motion of interfaces in random media. A key challenge is posed by the non-convex structure of the models, giving rise to rough energy landscapes and the emergence of complex physical phenomena.
B) We establish generalizations of homogenization in the absence of scale separation, a problem naturally posed in the framework of random media. By developing new high-dimensional approximability results, we will contribute to uncertainty quantification and the design of numerical homogenization schemes with lower computational complexity.
C) We develop a theory of stability and approximability of interface evolution problems past topology changes, a setting in which randomness may lead to the regularization of ill-posed evolutions and thereby allow for the derivation of error estimates for numerical approximation schemes. By relying on energy methods, we avoid the use of comparison principles, greatly enhancing the scope of applicability of our theory.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..
- ciencias naturales matemáticas matemáticas puras topología
- ciencias naturales matemáticas matemáticas puras análisis matemático ecuaciones diferenciales ecuaciones diferenciales parciales
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-STG - Starting Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2020-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
3400 KLOSTERNEUBURG
Austria
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.