Description du projet
Évaluer la durabilité des nanomatériaux à de hautes vitesses de déformation
La nanoindentation est la toute dernière technologie permettant aux chercheurs de mesurer les propriétés mécaniques d’un matériau à l’échelle du nanomètre et du micromètre. Cependant, elle ne peut déterminer les propriétés mécaniques que pour des charges contrôlées et non pour des impacts ou des collisions. Pour l’instant, les chercheurs ne peuvent reproduire des vitesses de déformation élevées que sur de grands échantillons homogènes. Le projet NanoHighSpeed, financé par l’UE, vise à faire évoluer la nanoindentation vers un nouvel outil destiné aux expériences à hautes vitesses de déformation, rendu possible par les progrès du matériel et des méthodes expérimentales. Ce nouveau procédé permettra de caractériser des matériaux à des vitesses de déformation des millions de fois supérieures et à des échelles des millions de fois plus petites.
Objectif
For a sustainable economy, it is paramount to create robust, durable products. In the case of mobile phone displays, cutting tools and other products subjected to impact loading, this means finding ways to avoid brittle failure at high stain rates. This is currently difficult, since little to no fundamental understanding of the deformation mechanisms at high strain rates exists. This is largely owing to the fact that no methods are available for nanoscale investigations. By developing nanoindentation into a new tool for high strain rate testing, we will achieve a groundbreaking improvement of the spatial resolution of high strain rate mechanical testing by 10^6. This extraordinary improvement will be possible through simultaneous advances in hardware and experimental methods.
This new nanoscale approach will enable a breakthrough in the fundamental understanding of the mechanical behavior of materials at high strain rates down to their constituent microstructural elements. We will isolate single grain boundaries and measure their individual contribution to strength and embrittlement as a function of strain rate, crystal structure and grain boundary energy. The local resistance to dislocation transmission, migration and fracture will be correlated to the overall Hall-Petch strengthening behavior of the polycrystal. The payoff will be a better understanding and predictability of embrittlement events at high strain rates.
A second breakthrough will be made possible in understanding the interplay between plasticity and brittle fracture at high strain rates in some of the technologically most important hard coatings, including toughened glass used in mobile phone screens and TiAlN based coatings, commonly used in tooling. We will examine the recent hypothesis of a possible regain in ductility and systematically investigate the influence of the microstructure and residual stress. This will open up new paths for optimizing the durability of future coating systems.
Champ scientifique
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- engineering and technologymaterials engineeringcrystals
- agricultural sciencesagriculture, forestry, and fisheriesagriculturegrains and oilseeds
- engineering and technologymaterials engineeringcoating and films
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsmobile phones
- social scienceseconomics and businesseconomicssustainable economy
Programme(s)
Thème(s)
Régime de financement
ERC-STG - Starting GrantInstitution d’accueil
34125 Kassel
Allemagne