Skip to main content
European Commission logo print header

High-speed Deformation and Failure of Materials at the Nanometer Scale

Descripción del proyecto

Evaluación de la durabilidad de los nanomateriales a velocidades de deformación altas

La nanoindentación es la última tecnología que permite a los investigadores medir las propiedades mecánicas de un material a escala nanométrica y micrométrica. Sin embargo, solo puede determinar las propiedades mecánicas para cargas controladas y no para impactos o colisiones. En la actualidad, los investigadores solo pueden reproducir velocidades de deformación altas en muestras grandes y homogéneas. El objetivo del proyecto NanoHighSpeed, financiado con fondos europeos, es hacer avanzar la nanoindentación hasta convertirla en una nueva herramienta de experimentación con velocidades de deformación altas, gracias a los avances en el «hardware» y los métodos experimentales. El nuevo proceso será capaz de caracterizar los materiales a velocidades de deformación millones de veces más altas y a escalas que son millones de veces más pequeñas.


For a sustainable economy, it is paramount to create robust, durable products. In the case of mobile phone displays, cutting tools and other products subjected to impact loading, this means finding ways to avoid brittle failure at high stain rates. This is currently difficult, since little to no fundamental understanding of the deformation mechanisms at high strain rates exists. This is largely owing to the fact that no methods are available for nanoscale investigations. By developing nanoindentation into a new tool for high strain rate testing, we will achieve a groundbreaking improvement of the spatial resolution of high strain rate mechanical testing by 10^6. This extraordinary improvement will be possible through simultaneous advances in hardware and experimental methods.

This new nanoscale approach will enable a breakthrough in the fundamental understanding of the mechanical behavior of materials at high strain rates down to their constituent microstructural elements. We will isolate single grain boundaries and measure their individual contribution to strength and embrittlement as a function of strain rate, crystal structure and grain boundary energy. The local resistance to dislocation transmission, migration and fracture will be correlated to the overall Hall-Petch strengthening behavior of the polycrystal. The payoff will be a better understanding and predictability of embrittlement events at high strain rates.

A second breakthrough will be made possible in understanding the interplay between plasticity and brittle fracture at high strain rates in some of the technologically most important hard coatings, including toughened glass used in mobile phone screens and TiAlN based coatings, commonly used in tooling. We will examine the recent hypothesis of a possible regain in ductility and systematically investigate the influence of the microstructure and residual stress. This will open up new paths for optimizing the durability of future coating systems.

Régimen de financiación

ERC-STG - Starting Grant


Aportación neta de la UEn
€ 1 426 370,31
Monchebergstrasse 19
34125 Kassel

Ver en el mapa

Hessen Kassel Kassel, Kreisfreie Stadt
Tipo de actividad
Higher or Secondary Education Establishments
Otras fuentes de financiación
€ 0,00

Beneficiarios (2)