Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Chromatic homotopy theory of spaces

Project description

Study sheds more light on the chromatic decomposition of spaces

Chromatic homotopy theory – a subfield of stable homotopy theory – studies complex-oriented cohomology theories from the ‘chromatic’ point of view. This method decomposes a spectrum into monochromatic pieces. Each piece is a localised structure corresponding to one of the prime fields of higher algebra. The goal of the EU-funded ChromSpaces project is to study the chromatic decomposition of spaces rather than of a spectrum. It will establish structural results for the category of all monochromatic spaces ‘of a given colour’ and investigate how the original space can be built from its local pieces. The new techniques will be based on previous results associating monochromatic spaces to spectral Lie algebras, which generalise Quillen’s rational homotopy theory to all the other relevant chromatic localisations of homotopy theory.

Objective

Many current developments in stable homotopy theory are guided by the ‘chromatic perspective’. One decomposes a spectrum into its monochromatic pieces, each of which is a localization corresponding to one of the prime fields of higher algebra (the Morava K-theories, generalizing the prime fields Q and F_p of ordinary algebra). The goal of this proposal is to study the chromatic decomposition of spaces, as opposed to that of spectra. I will establish structural results for the category of all monochromatic spaces ‘of a given color’ and study the assembly question: how to put the pieces back together to retrieve information about the original space? The techniques are informed by my recent results relating monochromatic spaces to spectral Lie algebras, which generalize Quillen’s rational homotopy theory to all the other relevant chromatic localizations of homotopy theory. More precisely, this research has the following goals. 1. Develop the structure theory of spectral Lie algebras and apply it to monochromatic spaces. This includes understanding Koszul duality between spectral Lie algebras and commutative ring spectra, with applications to a conjecture of Francis-Gaitsgory, and decomposition results for spectral Lie algebras, with applications to torsion exponents of homotopy groups, building on classical work of Cohen-Moore-Neisendorfer. 2. Develop a theory of transchromatic spectral Lie algebras, explaining how the different monochromatic pieces of homotopy theory interact. This connects to my previous work on the Goodwillie tower of homotopy theory and Tate coalgebras.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-STG

See all projects funded under this call

Host institution

UNIVERSITEIT UTRECHT
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 500 000,00
Address
HEIDELBERGLAAN 8
3584 CS Utrecht
Netherlands

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 500 000,00

Beneficiaries (1)

My booklet 0 0