Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Chromatic homotopy theory of spaces

Description du projet

Une étude fait la lumière sur la décomposition chromatique des espaces

La théorie de l’homotopie chromatique, un sous-domaine de la théorie de l’homotopie stable, s’intéresse aux théories de cohomologie complexe-orientables depuis la perspective dites «chromatique». Cette méthode décompose un spectre en éléments monochromes. Chaque élément constitue une structure localisée correspondant à l’un des principaux champs de l’algèbre avancée. L’objectif du projet ChromSpaces, financé par l’UE, est d’étudier la décomposition chromatique des espaces plutôt que celle d’un spectre. Il déterminera des résultats structurels pour la catégorie de tous les espaces monochromes «d’une certaine couleur», et étudiera la manière dont l’espace d’origine est susceptible d’être assemblé à partir de ces pièces locales. Les nouvelles techniques du projet s’appuieront sur de précédents résultats associant les espaces monochromes aux algèbres de Lie spectrales, qui généralisent la théorie de l’homotopie rationnelle de Quillen à l’ensemble des autres localisations chromatiques pertinentes de la théorie de l’homotopie.

Objectif

Many current developments in stable homotopy theory are guided by the ‘chromatic perspective’. One decomposes a spectrum into its monochromatic pieces, each of which is a localization corresponding to one of the prime fields of higher algebra (the Morava K-theories, generalizing the prime fields Q and F_p of ordinary algebra). The goal of this proposal is to study the chromatic decomposition of spaces, as opposed to that of spectra. I will establish structural results for the category of all monochromatic spaces ‘of a given color’ and study the assembly question: how to put the pieces back together to retrieve information about the original space? The techniques are informed by my recent results relating monochromatic spaces to spectral Lie algebras, which generalize Quillen’s rational homotopy theory to all the other relevant chromatic localizations of homotopy theory. More precisely, this research has the following goals. 1. Develop the structure theory of spectral Lie algebras and apply it to monochromatic spaces. This includes understanding Koszul duality between spectral Lie algebras and commutative ring spectra, with applications to a conjecture of Francis-Gaitsgory, and decomposition results for spectral Lie algebras, with applications to torsion exponents of homotopy groups, building on classical work of Cohen-Moore-Neisendorfer. 2. Develop a theory of transchromatic spectral Lie algebras, explaining how the different monochromatic pieces of homotopy theory interact. This connects to my previous work on the Goodwillie tower of homotopy theory and Tate coalgebras.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-STG - Starting Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2020-STG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSITEIT UTRECHT
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 500 000,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 500 000,00

Bénéficiaires (1)

Mon livret 0 0