Descrizione del progetto
Uno studio getta maggiore luce sulla scomposizione cromatica degli spazi
La teoria dell’omotopia cromatica, una branca della teoria dell’omotopia stabile, esamina le teorie della coomologia orientata ai complessi dal punto di vista «cromatico». Questo metodo scompone uno spettro in pezzi monocromatici: ciascun pezzo rappresenta una struttura localizzata corrispondente a uno dei campi primari dell’algebra superiore. Lo scopo del progetto ChromSpaces, finanziato dall’UE, è lo studio della scomposizione cromatica degli spazi anziché quella di uno spettro. Il progetto stabilirà risultati strutturali per la categoria di tutti gli spazi monocromatici «di un determinato colore», indagando come sia possibile costruire lo spazio originale dai suoi pezzi locali. Le nuove tecniche si baseranno su risultati precedenti, associando spazi monocromatici ad algebre di Lie spettrali, che generalizzano la teoria dell’omotopia razionale di Quillen a livello di tutte le altre localizzazioni cromatiche pertinenti della teoria dell’omotopia.
Obiettivo
Many current developments in stable homotopy theory are guided by the ‘chromatic perspective’. One decomposes a spectrum into its monochromatic pieces, each of which is a localization corresponding to one of the prime fields of higher algebra (the Morava K-theories, generalizing the prime fields Q and F_p of ordinary algebra). The goal of this proposal is to study the chromatic decomposition of spaces, as opposed to that of spectra. I will establish structural results for the category of all monochromatic spaces ‘of a given color’ and study the assembly question: how to put the pieces back together to retrieve information about the original space? The techniques are informed by my recent results relating monochromatic spaces to spectral Lie algebras, which generalize Quillen’s rational homotopy theory to all the other relevant chromatic localizations of homotopy theory. More precisely, this research has the following goals. 1. Develop the structure theory of spectral Lie algebras and apply it to monochromatic spaces. This includes understanding Koszul duality between spectral Lie algebras and commutative ring spectra, with applications to a conjecture of Francis-Gaitsgory, and decomposition results for spectral Lie algebras, with applications to torsion exponents of homotopy groups, building on classical work of Cohen-Moore-Neisendorfer. 2. Develop a theory of transchromatic spectral Lie algebras, explaining how the different monochromatic pieces of homotopy theory interact. This connects to my previous work on the Goodwillie tower of homotopy theory and Tate coalgebras.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- ingegneria e tecnologia ingegneria dei materiali colori
- scienze naturali matematica matematica pura algebra
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
ERC-STG - Starting Grant
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2020-STG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
3584 CS Utrecht
Paesi Bassi
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.