Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Entropy in engineered quantum systems - Mesoscopic thermodynamics of correlated quantum states

Description du projet

La recherche en thermodynamique sur les systèmes quantiques d’ingénierie s’intensifie

Les systèmes quantiques qui hébergent des états électroniques corrélés présentent un intérêt fondamental et technologique exceptionnel. Ils donnent souvent naissance à des quasi-particules exotiques telles que les fermions de Majorana, dont la robustesse topologique inhérente offre un grand potentiel pour une utilisation comme qubits en informatique quantique. Pour comprendre les états électroniques exotiques trouvés dans les matériaux quantiques, le projet Quantropy financé par l’UE concevra de nouvelles façons de mesurer leurs propriétés thermodynamiques, en particulier l’entropie. Sonder les états électroniques dans les systèmes de faible dimension est notoirement complexe, en partie à cause du petit nombre d’électrons impliqués. Exploiter pleinement les mesures d’entropie en physique mésoscopique permettra d’approfondir la compréhension mécaniste des états quantiques corrélés dans les structures artificielles.

Objectif

Quantum systems that have been engineered to host correlated electronic states are of outstanding fundamental and technological interest. Often ‘exotic’ new quasi-particles emerge, such as Majorana fermions, whose inherent topological robustness forms the basis of a promising approach to quantum computation. Another recent example are sheets of pencil-lead graphene which superconduct with a proper twist between layers.

Thermodynamic probes have been central for characterising new phases of matter in bulk materials. Low-dimensional systems offer greater opportunities for control, but probing their electronic states in a similar way is notoriously difficult, in part because of the small number of electrons involved.

The objective of this project is to overcome this challenge and to develop a unique conceptual and experimental foundation for exploring correlated quantum states in low-dimensional systems by measuring thermodynamic quantities, in particular entropy. Entropy is one of the most fundamental of physical properties, and in recent years has been recognized as a key to understanding systems as diverse as qubits and black holes. Fully exploiting entropy measurements in mesoscopic physics will open up a new window to a mechanistic understanding of correlated quantum states in engineered structures, with promise for ground-breaking novel device paradigms.

Members of the consortium have pioneered some of the few existing approaches to making thermodynamic measurements of low-dimensional systems. In combining our expertise, we will develop, test and explore a versatile suite of thermodynamic probes, and in particular i) demonstrate fractional entropy as an unequivocal observable for exotic states, including Majorana fermions; ii) develop thermodynamic measurement paradigms to probe correlated states in novel materials, in particular twisted bilayer graphene; and iii) achieve the first-time measurement of macroscopic entanglement entropy in solid-state systems.

Régime de financement

ERC-SyG - Synergy grant

Institution d’accueil

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Contribution nette de l'UE
€ 4 037 500,00
Adresse
Raemistrasse 101
8092 Zuerich
Suisse

Voir sur la carte

Région
Schweiz/Suisse/Svizzera Zürich Zürich
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 4 037 500,00

Bénéficiaires (7)