Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Multi-Agent Systems for Pervasive Artificial Intelligence for assisting Humans in Modular Production Environments

CORDIS bietet Links zu öffentlichen Ergebnissen und Veröffentlichungen von HORIZONT-Projekten.

Links zu Ergebnissen und Veröffentlichungen von RP7-Projekten sowie Links zu einigen Typen spezifischer Ergebnisse wie Datensätzen und Software werden dynamisch von OpenAIRE abgerufen.

Leistungen

Report on the standardization landscape and applicable standards (öffnet in neuem Fenster)

A report containing the standards relevant for the project as starting material and the relevant standardization committees

Smart Factory testbed setup - Final results (öffnet in neuem Fenster)

This deliverable will describe the final results of the testbed setup of T61

Implementation of knowledge models (öffnet in neuem Fenster)

A document that describes all formalized knowledge models for all use cases representing relevant domain knowledge on processes products human worker etc

Use cases requirements and specifications (öffnet in neuem Fenster)

Report describing the use case requirements and specifications as well as the KPIs targets and baselines for all indicators

Standardisation proposals (öffnet in neuem Fenster)

Report that suggests parts of MAS4AI specifications that could become part of the formal standard

Intelligent Multi-agent System Architecture (öffnet in neuem Fenster)

The RAMI40 based reference architecture and specifications for the MAS4AI system

User manuals on accessing and using the MAS (öffnet in neuem Fenster)

Report containing user manuals that describe how the multiagentsystem and basic AI agents can be utilized

Report on the contribution to standardization (öffnet in neuem Fenster)

Report describing MAS4AI interaction with the relevant standardization committees and the contribution achieved to the development of standards based in the project results

Dissemination & communication activities - Third version (öffnet in neuem Fenster)

Final report on dissemination and communication activities including the impact assessment and KPIs attainment analysis

Modelling of the planning agent (öffnet in neuem Fenster)

This deliverable will provide the design consideration of the hierarchical planning agent

Lessons learnt and recommendations for instantiation of AI technologies in manufacturing (öffnet in neuem Fenster)

This report will describe the lessons learnt and provide recommendations for AI in manufacturing

Smart Factory testbed setup - Initial results (öffnet in neuem Fenster)

This deliverable will describe the initial results of the testbed setup of T61

User manuals on agent configuration and execution (öffnet in neuem Fenster)

Report containing user manuals that describe how agents can be configured with the Agent Service Description and how to execute Agents

Dissemination & communication activities - Initial version (öffnet in neuem Fenster)

The document presenting the plan of dissemination communication activities to be followed by the consortium Detailed planning for the first 18 month with dissemination and communication targets and KPIs for the entire project

Final Public Report (öffnet in neuem Fenster)

The public report summarising the major project results and highlights. Includes also an analytical assessment of the delivered impacts.

Ethics framework (öffnet in neuem Fenster)

report detailing the proposed ethics framework taking into account legal and privacy aspects of AI deployment in the pilots

Dissemination & communication activities - Second version (öffnet in neuem Fenster)

Updated plan of dissemination communication activities to be followed by the consortium Includes the report on the dissemination and communication activities carried out by the consortium to date

System requirements (öffnet in neuem Fenster)

Report describing the MAS4AI system requirements for the industrial cases

Demonstrator execution - Initial results (öffnet in neuem Fenster)

This deliverable will describe the initial results of the demonstrators of T6.2 to T6.6

Development of the planning agent (öffnet in neuem Fenster)

The final prototype of the planning agent and a short accompanying report detailing the development activities

Integration of knowledge representation (öffnet in neuem Fenster)

A prototype accompanied by a report that details the agent knowledge system as part of the integration of agent technologies in WP3, WP4, WP5.

Agent knowledge access framework (öffnet in neuem Fenster)

The prototype of a generic agent access system that provides access to the knowledge of the agent including semantic logic This prototype will be accompanied by a short report

Demonstrator execution - Final results (öffnet in neuem Fenster)

This deliverable will describe the final results of the demonstrators of T6.2 to T6.6

Hierarchical planning agent integration (öffnet in neuem Fenster)

This deliverable will handle the integration of the hierarchical planning agent to the MAS4AI system. A prototype of the integrated planning agent will be provided accompanied by a report.

Data Management Plan (öffnet in neuem Fenster)

The document describing the principles and procedures of handling projects research data by the consortium

Public web portal (öffnet in neuem Fenster)

Public site of the project accessible by all audiences for promoting the dissemination and communication activities

Veröffentlichungen

Enabling a Multi-Agent System for Resilient Production Flow in Modular Production Systems (öffnet in neuem Fenster)

Autoren: Simon Komesker, William Motsch, Jens Popper, Aleksandr Sidorenko, Achim Wagner, Martin Ruskowski
Veröffentlicht in: 2022
Herausgeber: Elsevier
DOI: 10.1016/j.procir.2022.05.097

A toolbox of agents for scheduling the paint shop in bicycle industry (öffnet in neuem Fenster)

Autoren: Siatras Vasilis, Nikolakis Nikos, Alexopoulos Kosmas, Mourtzis Dimitris
Veröffentlicht in: 2022
Herausgeber: Elsevier
DOI: 10.1016/j.procir.2022.05.124

Simultaneous Production and AGV Scheduling using Multi-Agent Deep Reinforcement Learning (öffnet in neuem Fenster)

Autoren: Jens Popper, Vassilios Yfantis, Martin Ruskowski
Veröffentlicht in: 2021
Herausgeber: Elsevier
DOI: 10.1016/j.procir.2021.11.257

Suche nach OpenAIRE-Daten ...

Bei der Suche nach OpenAIRE-Daten ist ein Fehler aufgetreten

Es liegen keine Ergebnisse vor

Mein Booklet 0 0