Descripción del proyecto
Monitorización continua del estiramiento en biopsias de tejido «ex vivo» sometidas a cribado de fármacos
Las tensiones mecánicas son factores clave asociados con el control del crecimiento y la proliferación de células y tejidos tumorales. La monitorización de estas tensiones nos ayudaría a comprender la progresión neoplásica y nos permitiría probar la efectividad de los fármacos antineoplásicos. El objetivo del proyecto StretchBio, financiado con fondos europeos, es desarrollar un nanosistema compacto y sin marcadores para monitorizar y cuantificar las tensiones mecánicas en biopsias de tejido «ex vivo». El enfoque de StretchBio se basa en un sensor de fuerza bidimensional basado, a su vez, en una matriz de nanopilares cuya curvatura, causada por las fuerzas mecánicas ejercidas por el tejido vivo, altera la luz transmitida a través de la matriz. Este novedoso nanodispositivo permitirá a los científicos evaluar los cambios de los tejidos sometidos a tratamientos con fármacos antineoplásicos para realizar un mejor cribado de fármacos.
Objetivo
Mechanical tension and stresses are considered key factors associated to the control of the growth and proliferation of tumoral cells and tissues. Monitoring of such stresses would help to better understand cancer progression and also to test the effectiveness of anticancer drugs aiming to restore normal tissue mechanics. However, there is no current
system available for monitoring the cellular mechanical properties, particularly for small tissue biopsies like those obtained with core needles.
The overall goal of the StretchBio project is the design, development, fabrication and proof of application of an advanced label-free and compact nanosystem for the continuous monitoring and quantification of mechanical stresses in ex vivo fresh tissue biopsies. This nanodevice will allow testing the changes of these tissues upon their treatment with anticancer drugs for improved drug screening. The basic principle of StretchBio is a two-dimensional force sensor based on an array of nanopillars, constituting a photonic crystal, in which the bending of one or more nanopillars, caused by the mechanical forces exerted by the living tissue, will give rise to a change in the transmitted light through the photonic crystal. The design and fabrication of this compact nanosystem needs to be addressed in concomitance with liquid cell culture media, which will constitute the interpillar medium, and with the fact that the ex vivo fresh biopsy needs to be placed on top of the nanopillars.
The proposed approach will be an enormous leap in the study of tissue growth and of drug screening in solid tumours whose progression is markedly contributed by tissue stiffening. This represents an innovative approach to personalized medicine, allowing the development of ad-hoc treatments.
Ámbito científico
Palabras clave
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-FETOPEN-2018-2019-2020-01
Régimen de financiación
RIA - Research and Innovation actionCoordinador
08007 Barcelona
España