Project description
Harnessing the computing power of the human brain
Today’s use of AI and machine learning is becoming ever more prevalent in crucial areas like healthcare, finance, autonomous vehicles and speech recognition. However, enormous investments in the field’s present approaches to machine learning and neuromorphic computing have serious limits, requiring ever-growing computing power and high energy demands. To achieve a breakthrough in this field, the EU-funded NEU-ChiP project will study how human brain stem cells grown on a microchip can be taught to solve problems from data. Using sophisticated 3D computer modelling, an interdisciplinary consortium will conduct an observation of processes of cells’ changes and their plasticity to enable a major change in machine learning technology.
Objective
The EU and the rest of the world increasingly rely on artificial intelligence (AI) and machine learning (ML) for everyday functioning. Applications range from decision making in areas such as health and finance, face recognition, autonomous vehicle control, speech recognition and interaction with the internet and social media platforms. Estimated annual global spend on ML and AI is $77.6B in 2022 with a business value of $3.9T. However, current deep-learning machines suffer from inherent and difficult limitations: architectures not adaptable, ineffective learning rules, long training times and computing power, making advances unsustainable.
The NeuChiP project will tackle this issue. We will use emerging stem cell technology to make human neuronal networks that self-organise developmentally using the rules that form the brain. Networks will be made of layered cortical structures and hubs, with guided directional network connections and housed in a fabricated assembly. Input will be by patterned light at cells expressing optogenetic actuators, and output recorded via high resolution 3D multielectrode arrays. Intrinsic physiological mechanisms will enable them to undergo plasticity to designated input patterns. NeuChip will surpass the abilities of conventional artificial neural networks by conducting tasks in dynamically changing environments, exploiting the adaptive, complex and exploratory nature of biological human neural systems. To achieve this we have assembled a cross-disciplinary consortium of neuroscientists, stem cell biologists, bioelectronics developers, statistical physicists, together with machine learning and neuromorphic computing experts. We expect that within 15 years NeuChiP technology, using biological learning rules and powerful human-brain-based circuits will lead to novel and widespread advances in machine learning abilities and beyond, leading to a paradigm-shift in AI technology and applications to benefit society.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
B4 7ET Birmingham
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.