Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-05-07

Positive energy representations of the loop group of so(n) and operator algebras

Obiettivo



Our main object of study is the positive energy representation theory of the loop group LSO(N) of the compact Lie group SO(N). This should lead to a complete study of the fusion ring of LSO(N) at any level l and will be submitted as a Ph.D. dissertation in Pure Mathematics at the University of Cambridge.
Since 1988, it has been realised that positive energy representations of the loop group LG = C'infinity'(S1, G) of a compact Lie group G can be studied using von Neumann algebras (J1, J2) Their finite dimensional prototype, the representations theory of the classical groups was understood in two stages. First, the irreducible representations were classified, the decomposition of their tensor products studied For loop groups, the natural class of irreducible representation are the (projective unitary) positive energy ones Defining a tensor product or fusion operation is a difficult problem since the naive one does not work There have been various proposed definitions (Bo, KL, S). The von Neumann algebra approach, successfully implemented for the loop group of SU(N) (Wal, Wa2) and the diffeomorphism group of the circle (L) uses Connes' tensor product operation on bimodules over a von Neumann algebra. The work of Wassermann (J2, Wal, Wa2) on the loop group of SU(N) shows that the computation of fusion reduces to understanding the properties of primary fields, the building blocks of Conformal Field Theory. Of particular importance are their analytical properties, when they are viewed as operator valued distributions and their braiding or commutation properties. The latter are related to the monodromy of a 1st order PDE, the Knizhnik-Zamolodchikov equation and can in principle be derived from a detailed analysis of its solutions. Once the braiding and analytical properties are known. the rest is taken care of by the positivity and unitarity structure implied by the underlying operator algebras. Although the computations related to the KZ ODE seem at present unmanageable in complete generality, we have succeeded in computing a sufficient number of specific braiding rules that should entirely determine the algebraic structure of the fusion ring of the loop group of SO(N), our principle object of interest. This was done by reducing the relevant PDE's to a simplified form, until then unnoticed in the literature. Motivated by recent results of Wasserman (Wa2), we are currently trying to relate our solutions to the generalised hypergeometric functions of Aomoto, Gelfand, and Schechtmann-Varehenko (A, GKZ, SV). This might lead to the computation of a greater number of braiding coefficients and to a proof of their symmetry properties predicted by Witten.
What remains to be studied are the analytical properties of the primary fields whose braiding we have already computed. These should follow from a thorough operator algebraic treatment of the fermionic and bosonic constructions of the standard positive energy representations of LSO(N) (GO). Our work should give a proof of the Verlinde rules (V) which predict the structure of the fusion ring of LSO(N) at any given level l. It should also prove that this ring is a braided tensor category of the type required to produce three manifold invariants. It would in that respect link with the work of Turaev and Wenzl on Quantum Invariant Theory (T). Along these lines, it would also relate to the work of Birman-Wenzl (BW) and Wenzl (We) in that we conjecture that the inclusion of type III, factors naturally associated to any positive energy representation of LSO(N)is isomorphic to the tensor product of the hyperfinite III1 factor with the inclusion defined by Wenzl.
REFERENCES
(A) K.Aomoto Gauss-Manin connection of integral of difference products, J. Math. Soc. Japan Vol. 39, No. 2l 1987, 191-208. (BW) J.S.Birman and H.Wenzl Braids, Link Polynomials and a Nets Algebra, Trans. Am. Math. Soc. 313(1989) 249-273.
(Bow R.E.Borcherds Vertez algebra, Kac-Moody algebras and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83(1986) 3068-71.
(GKZ) I.M.Gelfand,M.M.Kapranov and A.V.Zelevinsky Generalised Euler Integrals and A-Hyperpeometnc Functions, Adv. in Matl 84(1990), 255-71. (GO) P.Goddard D.Olive Kac-Moody and Virasoro Algebras in Relation to Quantum Physics, International Journal of Modern Physic
A1(1986) 303-414. (J1) V.F.R.Jones Subfactors and Knots. CBMS, Regional Conference Series in Mathematics Number 80, AMS 1991. (J2) V.F.R. Jones, Fusion en Algebres de con Neumann et groupes de lacets (d 'apres A. Wassermannj, Seminaire N. Bourbaki, to I presented on the 18th of June 1995. (KL) V.Kazhdan and G.Lusztig Tensor Structures Arising from Amine Lie Algebras IV, Jour. A.M.S. 7(1994), 383-453. (L) T.Loke Operator Algebras and Conformal Field Theory of the Discrete Series Representations of Diff(Sl). Ph.D. dissertatio University of Cambridge, 1994. (SV) V.Schechtman and A.Varchenko Arrangements of Hyperplanes and Lie Algebra Cohomology, Invent. Math. 106(1991), 139-194. (S) G.B.Segal unpublished notes on Conformal Field Theory. (T) V.G.Turaev Quantum Invariants of Knots and 3-manifolds, de Gruyter Studies in Mathematics 18, Walter de Gruyter 1994. (V) E.Verlinde Fusion Rules and Modular Transformations in 2D Conformal Field Theory, Nucl. Phys. B300(1988) 360-376.
(Wax) A.J.Wassermann Operator Algebras and Conformal Field Theory, to appear in the proceedings of the International Congress Mathematicians, Zurich 1994, Birkhauser Verlag.
(Wa2) A.J.Wassermann Conformal Field Theory and Operator Algebras III: Fusion for Won Neumann Algebras and Loop groups, to I published. (We) H.Wenzl Quantum Groups and Subfactors of Type B,C and D, Comm. in Math. Phys. 133(1990), 388-432.
Valerio Toledano Laredo, St. John's College, Cambridge CB2 lTP

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

Dati non disponibili

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

RGI - Research grants (individual fellowships)

Coordinatore

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Contributo UE
Nessun dato
Indirizzo
Wilberforce Road
CB3 0WB CAMBRIDGE
Regno Unito

Mostra sulla mappa

Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Partecipanti (1)

Il mio fascicolo 0 0