Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS
Contenuto archiviato il 2024-04-30

Floer homology of cotangent bundles and morses theory on the loop space / applications

Obiettivo



Research objectives and content
The purpose of the project is to prove that the Floer homology of the cotangent bundle of a Riemannian manifold M is naturally isomorphic to the homology of the loop space. The main step of the proof is to obtain the gradient flow of the classical action functional on the loop space of M as an adiabatic limit of the Floer gradient flow of the symplectic action on the loop space of T*M. The limit is one where the metric on the momentum coordinate converges to zero. There is a natural correspondence between the critical points in both theories (perturbed geodesics) and the limit argument relates the heat flow of the classical action to perturbed J-holomorphic curves in the cotangent bundle.
We intend to investigate implications of our result to - existence of Lagrangian submanifolds - spectral geometry
Training content (objective, benefit and expected impact)
Carrying out this project in collaboration with one of the leading experts in the field will give me detailed knowledge of analyzing nonlinear partial differential equations - a topic of fundamental interest in pure mathematics as well as in theoretical physics. The one-year symposium on symplectic geometry at Warwick university provides direct contact and access to researchers as well as research in symplectic geometry.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

Dati non disponibili

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

RGI - Research grants (individual fellowships)

Coordinatore

UNIVERSITY OF WARWICK
Contributo UE
Nessun dato
Indirizzo
Gibbet Hill Road
CV4 7AL COVENTRY
Regno Unito

Mostra sulla mappa

Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

Nessun dato

Partecipanti (1)

Il mio fascicolo 0 0