Obiettivo
The CHIC consortium comprises five groups from 4 different European countries and an American group that will join their forces in Quantum Calculation, Quantum Chemistry, Synthesis, UHV-AFM and UHV-STM, nano-fabrication, theoretical Near-field Optics and Single Molecule Spectroscopy in order to explore and develop the new concept of Hamiltonian processing, an alternative route mixing molecular nano-electronics and quantum computing approaches. Scanning Probe Microscopy or Single Molecule Optics envisions it to fabricate a device in which a single molecule is connected to two nano-electrodes and addressed. The tunnel current is used as a generator of non-stationary states. Data encoding is done by single molecule (SPM or optical) manipulation. Detection of the tunnel current channels by near-field optics provides data outputs. The CHIC consortium comprises five groups from 4 different European countries and an American group that will join their forces in Quantum Calculation, Quantum Chemistry, Synthesis, UHV-AFM and UHV-STM, nano-fabrication, theoretical Near-field Optics and Single Molecule Spectroscopy in order to explore and develop the new concept of Hamiltonian processing, an alternative route mixing molecular nano-electronics and quantum computing approaches. Scanning Probe Microscopy or Single Molecule Optics envisions it to fabricate a device in which a single molecule is connected to two nano-electrodes and addressed. The tunnel current is used as a generator of non-stationary states. Data encoding is done by single molecule (SPM or optical) manipulation. Detection of the tunnel current channels by near-field optics provides data outputs.
OBJECTIVES
The project objectives are to explore Hamiltonian processing, a new concept of molecular computing. The background idea is to use an electrode-molecule-electrode tunnel junction as a source of non-stationary electronic states and to leave natural intrinsic coherent evolution of the quantum system to process the calculation. The input data are encoded on the Hamiltonian, by modifying locally the molecular electronic structure either by electronic, mechanical or optical manipulation of parts of the molecule. The calculation results are represented by the signature of the inelastic part of the tunnel current in the output part of the molecule and are observed by scanning probe or single molecule spectroscopy. In its final implementation, the Hamiltonian processor will be a device in which a single molecule between two nano-electrodes is addressed by near-field optics.
DESCRIPTION OF WORK
- A theoretical exploration of the dynamics of a molecular quantum system:
-- The basis of the Hamiltonian parameterisation and its application to the conception of molecules and experimental set-ups;
-- A full theoretical description of a C-NOT gate and of a molecular implementation of the Grover algorithm;
-- The parameters obtained by calculation to design suitable molecules that will be then synthesised and studied first by AFM/STM techniques, then in a coplanar geometry.
- An investigation of intra-molecular electron transport and mechanics using SPM for imaging, manipulation, conformational switching of molecules on metallic or ultra-thin insulating films:
-- Theory and utilisation of inelastic tunnelling as an activation tool and a non-invasive way of observing tunnel current through its activating consequences;
-- A better characterisation of the tunnel current as a discrete source of non-stationary electronic states;
-- The knowledge acquired in positioning molecules and in inelastic activation used to perform single molecule synthesis giving access to complex architectures at predefined places on a surface. It will require major improvements and modification on UHV AFM and STM microscopes, an optimisation of nano-electrode fabrications and of electricalconnectors.
- A study of optically addressing and probing single molecules connected to electrodes:
-- Determination of useful and detrimental effects of electrodes on the optical response in far-field first at LT;
-- Selection of the prominent and more efficient effects (spectral changes, orientation changes of the absorption or emission dipole moments, fluorescence energy transfer or linear and/or quadratic Stark effects), detection of conformational changes at RT;
-- Theoretical optimisation of nanometric wave-guides for visible and near-UV light steering the fabrication of these light-guides d) address selectively one molecule.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali scienze fisiche fisica quantistica
- scienze naturali scienze chimiche chimica fisica chimica quantistica
- scienze naturali scienze fisiche ottica microscopia
- scienze naturali matematica matematica pura geometria
- scienze naturali scienze fisiche ottica spettroscopia
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Dati non disponibili
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Coordinatore
75794 PARIS CEDEX 16
Francia
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.