CORDIS
EU research results

CORDIS

English EN

Nano-Scale Organization Dynamics and Functions of Synapses: from single molecule tracking to the physiopathology of excitatory synaptic transmission

Project information

Grant agreement ID: 232942

Status

Closed project

  • Start date

    1 February 2009

  • End date

    31 January 2014

Funded under:

FP7-IDEAS-ERC

  • Overall budget:

    € 3 100 000

  • EU contribution

    € 3 100 000

Hosted by:

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

France

Objective

Synapses are arguably the most elaborate signaling machine of cells. This complex intercellular junction is specialized for rapid (millisecond) directional signaling. In addition, synapses change in response to patterns of neural activity and these changes can endure, modifying neuronal circuitry. These competing properties of persistence and plasticity must be encoded by the precise content and arrangement of molecules that comprise the presynaptic and postsynaptic specializations. The objective of this project is to uncover the internal organization and dynamics of the postsynaptic specialization at excitatory glutamatergic synapses of the mammalian brain at an unprecedented nano-scale resolution. For this aim, neurobiologists, physicists and chemists join forces in a team with proven track record of collaboration. We will combine cellular and molecular neurobiology approaches with development of novel optical technologies, biosensors and combined quantitative light and electron microscopic imaging techniques. This will provide a new level of analysis to the fundamental problem of molecular information storage. Photothermal imaging of nano-gold particles will allow unprecedented quantitative histochemistry and tracking of protein trafficking up to the level of intact tissue. Development of Cryo-Photoactivated Light Microscopy will allow the correlative localization of synaptic elements at the light and electron-microscopic level. Novel biosensors and chemical tools will be developed for the investigation of the dynamic macromolecular events underlying synaptic plasticity. We will identify new mechanisms that control fast synaptic transmission and its long term activity dependent modification. We will unravel how fast receptor diffusion controls frequency dependent synaptic transmission and how regulation of receptor trafficking participates in synaptic plasticity.
Leaflet | Map data © OpenStreetMap contributors, Credit: EC-GISCO, © EuroGeographics for the administrative boundaries

Principal Investigator

Daniel Choquet (Dr.)

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

Address

Rue Michel Ange 3
75794 Paris

France

Activity type

Research Organisations

EU Contribution

€ 3 100 000

Principal Investigator

Daniel Choquet (Dr.)

Administrative Contact

Christophe Giraud (Mr.)

Beneficiaries (1)

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

France

EU Contribution

€ 3 100 000

Project information

Grant agreement ID: 232942

Status

Closed project

  • Start date

    1 February 2009

  • End date

    31 January 2014

Funded under:

FP7-IDEAS-ERC

  • Overall budget:

    € 3 100 000

  • EU contribution

    € 3 100 000

Hosted by:

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS

France