Strukturen kristallklar darstellen
Kristallstrukturen werden durch Röntgen-Beugungsverfahren bestimmt. Wenn ein Röntgenstrahl auf ein kristallines Gitter trifft, wird der Strahl gemäß der atomaren Struktur des Gitters zerstreut. Die Produktion von Röntgenstrahlen für dieses Verfahren hat sich durch die Entwicklung des Synchrotrons bedeutend verbessert. Ein Synchrotron ist ein ringförmiger Teilchenbeschleuniger, der elektrische Felder zur Beschleuigung der geladenen Teilchen nutzt und Magnetfelder einsetzt, um diese in eine ringförmige Bahn zur Erzeugung von Röntgenstrahlen zu leiten. Wenn diese zerstreut werden, ist ein adäquates Erkennungssystem erforderlich. Röntgenstrahlen-Detektoren haben sich von geräuschvollen fotografischen Filmen in schnelle, automatische ladungsgekoppelte Bauelemente (Charge-Coupled Devices - CCD) entwickelt. Man fand jedoch heraus, dass Fotoleiter selbst den CCD bedeutend überlegen sind. Unter Einsatz des Fotoleiters Selenium wurde ein Röntgenstrahlen-Detektor entwickelt, der auf der direkten Umwandlung von Röntgenstrahlen in Ladungen basiert. Bei den Fotoleitern handelt es sich um Halbleiter. Im Dunkeln sind diese Materialien Isolatoren, unter Lichteinfluss werden sie allerdings tatsächlich zu elektrischen Leitern. Wenn Licht- oder Röntgenphotonen absorbiert werden, stimuliert die Energie des eintreffenden Photons die Elektronen im Fotoleiter bis zu einem Zustand, der auch als Leitungsband bezeichnet wird. In der Gegenwart eines elektrischen Feldes bewegen sich die Elektronen im Leitungsband entlang der elektrischen Feldlinien. So können die freigegebenen Ladungen durch die Absorption von Licht oder Röntgenstrahlen gesammelt werden, indem eine Spannung auf einen Teil des fotoleitenden Materials gelegt wird. Die Ladungssammlung reproduziert das Röntgenbild. Die Eigenschaften des Detektors haben sich als außergewöhnlich erwiesen. Der Lärm ist minimal und die Sensitivität ist hoch. Er ist extreme effizient und man geht davon aus, dass er die Bestimmung umfangreicher Strukturen in Rekordzeit ermöglichen wird. Der Detektor kann in Forschungsinstituten, die mit Synchrotronen arbeiten, aber auch in privaten Laboratorien eingesetzt werden und könnte sich als leistungsstarkes Tool zur Erklärung von Strukturen erweisen.