Skip to main content

Blind Source Separation and Applications

Article Category

Article available in the folowing languages:

Trovare un ago in un pagliaio

Nelle registrazioni audio può essere difficile separare diversi suoni naturali uniti al rumore di fondo. I ricercatori del progetto BLISS, finanziato dall'UE, hanno analizzato questo problema da prospettive diverse prima di proporre metodi di elaborazione del segnale basati sulla statistica.

Economia digitale

Le feste e altri simili ambienti rumorosi sono esempi estremi delle sfide poste alla separazione dei suoni. Di solito, gli ascoltatori cercano di seguire una singola voce nel mezzo di conversazioni, suoni di bicchieri e musica ad alto volume. Il problema non è tuttavia esclusivamente umano, anche gli algoritmi meccanici che interpretano il suono si trovano a dover riconoscere suoni coperti da altri suoni. Ad esempio, i programmi di riconoscimento della voce di solito funzionano quasi alla perfezione se chi parla si trova da solo in un ambiente silenzioso, ma il loro funzionamento viene compromesso se usati in condizioni reali, ovvero in presenza di altre fonti di rumore. Una soluzione al problema è usare microfoni multipli per registrare diverse persone che parlano simultaneamente. La voce di una particolare persona che parla si può poi selezionare in cieco in base alle indipendenze dei segnali audio. In pratica, però, l'acquisizione di segnali indipendenti rimane un'approssimazione più o meno a grandi linee, se avviene. È interessante notare che se si possiedono in precedenza informazioni sulle sorgenti del segnale, come la distanza tra loro, si può ridurre la complessità della soluzione ottenendo algoritmi semplificati. Il problema si riassume in una domanda: come si identificano con precisione i segnali vocali da raggruppare e quelli da interpretare individualmente. Con un determinato costo per diversi risultati possibili, le cosiddette statistiche bayesiane hanno dato ai partner del progetto BLISS la possibilità di prendere la decisione migliore in base alle informazioni disponibili. In primo luogo, hanno approssimato le dipendenze tra sorgenti del segnale con equazioni matematiche. I modelli ottenuti sono stati usati per rimuovere o sopprimere le dipendenze in modo da separare più facilmente i segnali rimanenti. Il principale svantaggio dei metodi bayesiani è la loro complessità computazionale, che in passato ne ha limitato l'applicazione a semplici problemi di separazione cieca. Eppure l'approccio proposto non è legato ad alcun tipo di segnale specifico. Le sue applicazioni variano dalla separazione di registrazioni stereo per apparecchi uditivi, onde cerebrali di sensori medici e segnali radio delle reti di telecomunicazione.

Scopri altri articoli nello stesso settore di applicazione