Descrizione del progetto
La ricerca sulle mappe planari casuali potrebbe risolvere problemi fondamentali della fisica statistica
Le mappe planari sono un campo di ricerca in piena espansione, a metà strada tra la teoria della probabilità, la geometria, la combinatoria, l’analisi complessa e la fisica statistica. Si tratta di integrazioni delle mappe topologiche su un piano, che viene suddiviso in vertici, spigoli e facce. Come superfici casuali discrete, possono convergere su superfici limite. Il progetto UniversalMap, finanziato dall’UE, intende dimostrare che le integrazioni di alcune mappe planari casuali convergono nella gravità quantistica di Liouville, una classe di modelli di superficie casuali naturali che affonda le sue radici nelle teoria di campo conforme. Attraverso la combinazione delle competenze da diversi campi, il progetto intende inoltre dimostrare il principio di universalità delle mappe planari casuali integrate. Le ricerche del progetto potrebbero offrire soluzioni personalizzate a problemi centrali nella fisica statistica, quali fornire misurazioni sulla distanza di un cammino auto-evitante di n passi.
Obiettivo
The PI proposes to study a variety of open problems involving random planar maps and trees. This is a booming field at the intersection of probability, geometry, statistical physics, combinatorics and complex analysis. It has grown tremendously in the last two decades, in depth and breadth, and has seen breakthroughs on long-standing classical problems.
The PI's first goal is to study the universality of embedded random planar maps and prove their convergence to what is known as Liouville quantum gravity, a class of random surfaces predicted by physicists to be the universal limit to such discrete random surfaces. Various map embedding mechanisms will be studied such as harmonic embedding, square-tiling, circle packing and others. The second goal is to solve problems concerning stochastic processes (such as random walks, percolation and the Ising model) on embedded random planar maps. This will shed light on the behavior of the same stochastic processes on regular lattices (such as the square or triangular grids) due to the non-rigorous Knizhnik-Polyakov-Zamolodchikov correspondence, a conjectural formula from the physics literature relating the behavior of critical statistical physics models on random lattices to their behavior on regular lattices. We will gain progress on these inspiring yet non-rigorous predictions by developing various probabilistic, geometric and complex analytic tools aimed to show that instabilities in the embeddings cancel out due to the randomness of the planar maps.
This project has the potential to lead to the solution of the most central problems in two-dimensional statistical physics, such as estimating the typical displacement of the self-avoiding walk, proving conformal invariance for critical percolation on the square lattice and many others.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.
- scienze naturali matematica matematica pura geometria
- scienze naturali matematica matematica pura matematica discreta combinatoria
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Parole chiave
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMMA PRINCIPALE
Vedi tutti i progetti finanziati nell’ambito di questo programma
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
ERC-COG - Consolidator Grant
Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
(si apre in una nuova finestra) ERC-2020-COG
Vedi tutti i progetti finanziati nell’ambito del bandoIstituzione ospitante
Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.
69978 Tel Aviv
Israele
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.