Projektbeschreibung
Die sukzessive strukturelle und funktionelle Überprüfung von Proteinen in einem winzigen Untersuchungsraum
Proteine sind natürliche Polymere, die aus Bausteinen in Form von Aminosäuren bestehen. Sie enthalten zwischen 50 und 2 000 Aminosäuren, die wiederum aus durchschnittlich 19 Atomen bestehen, sodass die gesamte Kette sehr komplizierte 3D-Formen annehmen kann. Das Wissen um die Proteinfunktion hängt in erheblichem Maße von der Untersuchung der Proteinstruktur ab, diese ist jedoch fragil und kann von experimentellen Protokollen und Verfahren gestört werden. Das EU-finanzierte Projekt SIMONANO2 wird neuartige, stabile Kammern aus einem einzelnen Molekül entwickeln, die die Analyse einzelner Proteinreaktionen erleichtern und Eingriffe überflüssig machen, die die Experimente und die Interpretation der Ergebnisse verkomplizieren. Die nanoskaligen Reaktionskammern versprechen ungeahnte Einblicke in die Struktur und Dynamik von Molekülen.
Ziel
Single Molecule Analysis in Nanoscale Reaction Chambers
Imagine that you would measure the average eye color of the population in Sweden. Clearly it would not say much about the colors of the eyes of the inhabitants. To obtain this information, one must of course study them individually. The same holds true for complex biological molecules, especially proteins, which may exist in many different configurations that cannot be resolved in an ensemble measurement. Heterogeneities in biomolecular structure and function limit our understanding of biology. To advance further it is vital that we study biomolecules individually. For proteins this is highly challenging since it must be done in a non-invasive manner under conditions similar to their native environment.
The SIMONANO project aims to develop a new platform for single molecule analysis which provides essential advantages. Proteins will be controllably loaded into solid nanoscale chambers, thereby eliminating the need of field gradient forces or surface immobilization. Furthermore, the proteins are entrapped at physiological conditions and small ligands can still access them quickly. Most importantly, the content is regulated on the single molecule level, i.e. proteins can be controllably loaded one at a time and different types of proteins can be introduced sequentially. Advanced (but established) fluorescence microscopy techniques will be used to detect the proteins and analyze their reactions.
The possibility to reliably entrap any desired number of proteins under physiological conditions and study their reactions will provide great scientific advancements in the life sciences. Once developed in this project, the nanoscale reaction chambers can become a tool used by biologists worldwide, which will advance our understanding of life on the molecular level. This will in turn lead to new applications in biotechnology and medicine.
Wissenschaftliches Gebiet
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-COG - Consolidator GrantGastgebende Einrichtung
412 96 Goteborg
Schweden