Projektbeschreibung
Zufällige Kachelung in Ebenen besser verstehen
Ähnlich wie Fliesen an einer Wand oder Parkett auf einem Fußboden verlegt werden, stellen Kachelungen von Ebenen, d. h. das Bedecken eines zweidimensionalen Gebiets mit bestimmten Formen ohne Lücken oder Überschneidungen, ein aktives Forschungsgebiet der Mathematik, Physik und Informatik dar. Zufällige Kachelungen, bei denen das Muster eine zufällige Kombination aus allen möglichen Kachelkombinationen bildet, finden wichtige Anwendungen in der theoretischen Physik und der statistischen Mechanik. Das EU-finanzierte Projekt PiRaT wird nun die exotischen Muster in der zufälligen Kachelung ebener Gebiete untersuchen, um die Modelle für zufällige Kachelungen zu erweitern und zu verbessern sowie mehrere damit in Zusammenhang stehende Vermutungen zu erforschen, die bisher kaum geklärt sind.
Ziel
In the past two decades great progress has been made on the understanding of the remarkable patterns that random tilings of planar domains exhibit. Yet, many models are still out of reach with state-of-the-art techniques and several conjectures remain unsolved. The general purpose of this project is develop new techniques for solving such conjectures and explore new territories. In particular we will look at random tilings models where the randomness is comes from doubly periodic weights on the underlying bipartite graph and their connection to matrix valued special functions. The project includes the following 6 objectives: 1. Develop methods for asymptotic studies of the correlation function for random tilings of large domains, including measures from doubly periodic weights. 2. Derive new asymptotic formulas for matrix-valued orthogonal polynomials by developing a steepest descent method for their Riemann-Hilbert problem. 3. Formulate and investigate natural extensions of Schur processes that include doubly periodic weights that have a special integrable structure, such as the two-periodic Aztec diamond. 4. Study the universality of global fluctuations of the height functions. 5. Prove new Central Limit Theorems fluctuations of linear statistics with for determinantal especially those coming from random tilings. 6. A deeper investigation of the random geometry of the height fluctuations, such as level lines and thick points.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Die Klassifikation dieses Projekts wurde von Menschen validiert.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Die Klassifikation dieses Projekts wurde von Menschen validiert.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
ERC-COG - Consolidator Grant
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) ERC-2020-COG
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenGastgebende Einrichtung
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
100 44 STOCKHOLM
Schweden
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.