Project description
The role of chromosome architecture in recombination
Sexually reproducing organisms have evolved a specialised cell division mechanism termed meiosis, which ensures the production of gametes with half the genetic material and ploidy maintenance over generations. During meiosis, homologous chromosomes are physically linked to ensure correct segregation into gametes. By doing so, they cross over at different positions and exchange genetic material, which leads to genetic variation in the offspring. Given that crossover patterning differs each time, the EU-funded CrossOver project aims to investigate the determinants of this process with particular emphasis on the role of chromosome features.
Objective
To haploidise their genome, sexually reproducing organisms employ a specialised cell division program – meiosis – which consists of one round of DNA replication followed by two consecutive rounds of chromosome segregation: meiosis I and II. While meiosis II resembles mitosis, the ability of cells to segregate homologous chromosomes entails several specialised events. In most organisms, physical linkage and subsequent disjunction of maternal and paternal chromosomes require homologous recombination and crossing-over. As observed over a century ago, crossovers occur at different chromosomal positions in different meiotic nuclei – however, the incidence of a crossover in a given location reduces the probability of a neighbouring crossover event. As a result, crossovers tend to be widely and evenly spaced along chromosomes, a phenomenon termed crossover interference. Work in the last 30 years has led to remarkable progress in the delineation of the sequence of molecular events that lead to crossing-over. However, how cells spatially regulate the deployment and assembly of molecular determinants to accomplish crossover patterning remains largely unknown. Here, I propose to tackle this fundamental question through the development of two novel approaches tailored to explore central aspects of meiotic recombination with unprecedented resolution:
i) to understand how chromosomal context shapes crossing-over, we will develop novel methodology (HJmap) to achieve genome-wide mapping of Holliday junctions: central recombination intermediates which mark future crossover sites.
ii) to explore how local chromosomal features influence crossing-over, we will visualise the architecture of crossover-designated recombination intermediates in situ, and in 3D, using electron cryotomography.
By understanding how cells implement genetic exchange through crossing-over we will shed light on the molecular basis of heredity: the passing of traits from parents to their offspring.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1010 WIEN
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.